Page 117 - Read Online
P. 117

Mathew et al. Vessel Plus 2020;4:11  I  http://dx.doi.org/10.20517/2574-1209.2019.35                                                Page 13 of 15

               60.  Holme PA, Orvim U, Hamers MJ, Solum NO, Brosstad FR, et al. Shear-induced platelet activation and platelet microparticle formation at
                   blood flow conditions as in arteries with a severe stenosis. Arterioscler Thromb Vasc Biol 1997;17:646-53.
               61.  Weber A, Köppen HO, Schrör K. Platelet-derived microparticles stimulate coronary artery smooth muscle cell mitogenesis by a PDGF-
                   independent mechanism. Thromb Res 2000;98:461-6.
               62.  Oggero S, Austin-Williams S, Norling LV. The contrasting role of extracellular vesicles in vascular inflammation and tissue repair. Front
                   Pharmacol 2019;10:1479.
               63.  Agouni A, Lagrue-Lak-Hal AH, Ducluzeau PH, Mostefai HA, Draunet-Busson C, et al. Endothelial dysfunction caused by circulating
                   microparticles from patients with metabolic syndrome. Am J Pathol 2008;173:1210-9.
               64.  Ettelaie C, Su S, Li C, Collier ME. Tissue factor-containing microparticles released from mesangial cells in response to high glucose and
                   AGE induce tube formation in microvascular cells. Microvasc Res 2008;76:152-60.
               65.  Latifkar A, Hur YH, Sanchez JC, Cerione RA, Antonyak MA. New insights into extracellular vesicle biogenesis and function. J Cell Sci
                   2019;132:jcs222406.
               66.  Bebelman MP, Smit MJ, Pegtel DM, Baglio SR. Biogenesis and function of extracellular vesicles in cancer. Pharmacol Ther 2018;188:1-11.
               67.  Dorai T, Shah A, Summers F, Mathew R, Huang J, et al. NRH:Quinone Oxidoreductase 2 (NQO2) and Glutaminase (GLS) both play a
                   role in large extracellular vesicles (LEV) formation in preclinical LNCaP-C4-2B prostate cancer model of progressive metastasis. Prostate
                   2018;78:1181-95.
               68.  Kassem M, Kristiansen M, Abdallah BM. Mesenchymal stem cells: cell biology and potential use in therapy. Basic Clin Pharmacol
                   Toxicol 2004;95:209-14.
               69.  Li L, Wang R, Jia Y, Rong R, Xu M, et al. Exosomes derived from mesenchymal stem cells ameliorate renal ischemic-reperfusion
                   injurythrough inhibiting inflammation and cell apoptosis. Front Med 2019;6:269.
               70.  Song YS, Joo HW, Park IH, Shen GY, Lee Y, et al. Bone marrow mesenchymal stem cell-derived vascular endothelial growth factor
                   attenuates cardiac apoptosis via regulation of cardiac miRNA-23a and miRNA-92a in a rat model of myocardial infarction. PLoS One
                   2017;12:e0179972.
               71.  Zhou Z, Pan M, Yan C. Mesenchymal stem cells transfer mitochondria into cerebral microvasculature and promote recovery from
                   ischemic stroke. Microvasc Res 2019;123:74-80.
               72.  Sun Y, Shi H, Yin S, Ji C, Zhang X, et al. Human mesenchymal stem cell derived exosomes alleviate type 2 diabetes mellitus by reversing
                   peripheral insulin resistance and relieving β-cell destruction. ACS Nano 2018;12:7613-628.
               73.  Qiu G, Zheng G, Ge M, Wang J, Huang R, et al. Mesenchymal stem cell-derived extracellular vesicles affect disease outcomes via
                   transfer of microRNAs. Stem Cell Res Therap 2018;9:320.
               74.  Lai RC, Yeo RW, Lim SK. Mesenchymal stem cell exosomes. Semin Cell Dev Biol 2015;40:82-8.
               75.  Arslan F, Lai RC, Smeets MB, Akeroyd L, Choo A, et al. Mesenchymal stem cell-derived exosomes increase ATP levels, decrease
                   oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial
                   ischemia/reperfusion injury. Stem Cell Res 2013;10:301-12.
               76.  Salomon C, Ryan J, Sobrevia L, Kobayashi M, Ashman K, et al. Exosomal signaling during hypoxia mediates microvascular endothelial
                   cell migration and vasculogenesis. PLoS One 2013;8:e68451.
               77.  Sammour I, Somashekar S, Huang J, Batlahally S, Breton M, et al. The effect of gender on mesenchymal stem cell (MSC) efficacy in
                   neonatal hyperoxia-induced lung injury. PloS One 2016;11:e0164269.
               78.   Zeller CN, Wang Y, Markel TA, Weil B, Abarbanell A, et al. Role of tumor necrosis factor receptor 1 in sex differences of stem cell
                   mediated cardioprotection. Ann Thorac Surg 2009;87:812-9.
               79.  Wang L, Gu H, Turrentine M, Wang M. Estradiol treatment promotes cardiac stem cell (CSC)-derived growth factors, thus improving
                   CSC-mediated cardioprotection after acute ischemia/reperfusion. Surgery 2014;156:243-52.
               80.  Matsumoto T, Kubo S, Meszaros LB, Corsi KA, Cooper GM, et al. The influence of sex on the chondrogenic potential of muscle-derived
                   stem cells: implications for cartilage regeneration and repair. Arthritis Rheum 2008;58:3809-19.
               81.  Mause SF, von Hundelshausen P, Zernecke A, Koenen RR, Weber C. Platelet microparticles: a transcellular delivery system for RANTES
                   promoting monocyte recruitment on endothelium. Arterioscler Thromb Vasc Biol 2005;25:1512-8.
               82.  Blair LA, Haven AK, Bauer NN. Circulating microparticles in severe pulmonary arterial hypertension increase intercellular adhesion
                   molecule-1 expression selectively in pulmonary artery endothelium. Respir Res 2016;17:133.
               83.  Nadaud S, Poirier O, Girerd B, Blanc C, Montani D, et al. Small platelet microparticle levels are increased in pulmonary arterial
                   hypertension. Eur J Clin Invest 2013;43:64-71.
               84.  Diehl P, Aleker M, Helbing T, Sossong V, Germann M, et al. Increased platelet, leukocyte and endothelial microparticles predict enhanced
                   coagulation and vascular inflammation in pulmonary hypertension. J Thromb Thrombolysis 2011;31:173-9.
               85.  Amabile N, Heiss C, Chang V, Angeli FS, Damon L, et al. Increased CD62e (+) endothelial microparticle levels predict poor outcome in
                   pulmonary hypertension patients. J Heart Lung Transplant 2009;28:1081-6.
               86.  Tual-Chalot S, Guibert C, Muller B, Savineau JP, Andriantsitohaina R, et al. Circulating microparticles from pulmonary hypertensive rats
                   induce endothelial dysfunction. Am J Respir Crit Care Med 2010;182:261-8.
               87.  Bakouboula B, Morel O, Faure A, Zobairi F, Jesel L, et al. Procoagulant membrane microparticles correlate with the severity of
                   pulmonary arterial hypertension. Am J Respir Crit Care Med 2008;177:536-43.
               88.  Kosanovic D, Deo U, Gall H, Selvakumar B, Herold S, et al. Enhanced circulating levels of CD3 cells-derived extracellular vesicles in
                   different forms of pulmonary hypertension. Pulm Circ 2019;9:2045894019864357.
               89.  Zhao L, Luo H, Li X, Li T, He J, et al. Exosomes derived from human pulmonary artery endothelial cells shift the balance between
   112   113   114   115   116   117   118   119   120   121   122