Page 116 - Read Online
P. 116

Page 12 of 15                                                  Mathew et al. Vessel Plus 2020;4:11  I  http://dx.doi.org/10.20517/2574-1209.2019.35

                   combined with pulsatile shear stress causes apoptosis and subsequent proliferation of apoptosis-resistant endothelial cells. Chest
                   2005;128:610S-1.
               27.  Swärd K, Sadegh MK, Mori M, Erjefält JS, Rippe C. Elevated pulmonary arterial pressure and altered expression of Ddah1 and Arg1 in
                   mice lacking cavin-1/PTRF. Physiol Rep 2013;1:e00008.
               28.  Williams TM, Lisanti MP. Caveolin-1 in oncogenic transformation, cancer, and metastasis. Am J Physiol Cell Physiol 2005;288:C494-506.
               29.  Joshi B, Strugnell SS, Goetz JG, Kojic LD, Cox ME, et al. Phosphorylated caveolin-1 regulates Rho/ROCK-dependent focal adhesion
                   dynamics and tumor cell migration and invasion. Cancer Res 2008;68:8210-20.
               30.  Núñez-Wehinger S, Ortiz RJ, Díaz N, Díaz J, Lobos-González L, et al. Caveolin-1 in cell migration and metastasis. Curr Mol Med
                   2014;14:255-74.
               31.  Schermuly RT, Ghofrani HA, Wilkins MR, Grimminger F. Mechanisms of disease: pulmonary arterial hypertension. Nat Rec Cardiol
                   2011;8:443-55.
               32.  van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Cell Mol Biol 2018;19:213-28.
               33.  Slomka A, Urban SK, Lukacs-Kornek V, Żekanowska E, Kornek M. Large extracellular vesicles: have we found the holy grail of
                   inflammation? Front Immunol 2018;9:2723.
               34.  Yáñez-Mó M, Siljander PR, Andreu Z, Zavec AB, Borràs FE, et al. Biological properties of extracellular vesicles and their physiological
                   functions. J Extracell Vesicles 2015;4:27066.
               35.  Boulanger CM, Loyer X, Rautou PE, Amabile N. Extracellular vesicles in coronary artery disease. Nat Rev Cardiol 2017;14:259-72.
               36.  Colombo M, Raposo G, Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Ann
                   Rev Cell Dev Biol 2014;30:255-89.
               37.  György B, Szabó TG, Pásztói M, Pál Z, Misják P, et al. Membrane vesicles, current state-of-the-art: emerging role of extracellular
                   vesicles. Cell Mol Life Sci 2011;68:2667-88.
               38.  Ahn J, Johnstone RM. Origin of a soluble truncated transferrin receptor. Blood 1993;81:2442-51.
               39.  Zhang J, Li S, Li L, Meng Li M, Guo C, et al. Exosome and exosomal microRNA: trafficking, sorting, and function. Genomics
                   Proteomics Bioinformatics 2015;13:17-24.
               40.  Costa Verdera H, Gitz-Francois JJ, Schiffelers RM, Vader P. Cellular uptake of extracellular vesicles is mediated by clathrin-independent
                   endocytosis and macropinocytosis. J Control Release 2017;266:100-8.
               41.  Svensson KJ, Christianson HC, Wittrup A, Bourseau-Guilmain E, Lindqvist E, et al. Exosome uptake depends on ERK1/2-heat shock
                   protein 27 signaling and lipid Raft-mediated endocytosis negatively regulated by caveolin-1. J Biol Chem 2013;288:17713-24.
               42.  Mulcahy LA, Pink RC, Carter DR. Routes and mechanisms of extracellular vesicle uptake. J Extracell Vesicles 2014;3.
               43.  Stenmark H. Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 2009;10:513-25.
               44.  Sheldon H, Heikamp E, Turley H, Dragovic R, Thomas P, et al. New mechanism for Notch signaling to endothelium at a distance by
                   Delta-like 4 incorporation into exosomes. Blood 2010;116:2385-94.
               45.  Hargette LA, Bauer NN. On the origin of microparticles: From platelet dust to mediators of intercellular communication. Pulm Circ
                   2013;3:329-40.
               46.  Lovren F, Verma S. Evolving role of microparticles in the pathophysiology of endothelial dysfunction. Clin Chem 2013;59:1166-74.
               47.  Dignat-George F, Boulanger CM. The many faces of endothelial microparticles. Arterioscler Thromb Vasc Biol 2011;31:27-33.
               48.  Rautou PE, Leroyer AS, Ramkhelawon B, Devue C, Duflaut D, et al. Microparticles from human atherosclerotic plaques promote
                   endothelial ICAM-1-dependent monocyte adhesion and transendothelial migration. Circ Res 2011;108:335-43.
               49.  Chironi G, Simon A, Hugel B, Del Pino M, Gariepy J, et al. Circulating leukocyte-derived microparticles predict subclinical
                   atherosclerosis burden in asymptomatic subjects. Arterioscle Thromb Vasc Biol 2006;26:2775-80.
               50.  Wang JM, Wang Y, Huang JY, Yang Z, Chen L, et al. C-Reactive protein-induced endothelial microparticle generation in HUVECs is
                   related to BH4-dependent NO formation J Vasc Res 2007;44:241-8.
               51.  Habersberger J, Strang F, Scheichl A, Htun N, Bassler N, et al. Circulating microparticles generate and transport monomeric C-reactive
                   protein in patients with myocardial infarction. Cardiovasc Res 2012;96:64-72.
               52.  Tushuizen ME, Diamant M, Sturk A, Nieuwland R. Cell-derived microparticles in the pathogenesis of cardiovascular disease: friend or
                   foe? Arterioscler Thromb Vasc Biol 2011;31:4-9.
               53.  Abid Hussein MN, Böing AN, Sturk A, Hau CM, Nieuwland R. Inhibition of microparticle release triggers endothelial cell apoptosis and
                   detachment. Thromb Haemost 2007;98:1096-107.
               54.  Sayner SL, Choi CS, Maulucci ME, Ramila KC, Zhou C, et al. Extracellular vesicles: another compartment for the second messenger,
                   cyclic adenosine monophosphate. Am J Physiol Lung Cell Mol Physiol 2019;316:L691-700.
               55.  Deregibus MC, Cantaluppi V, Calogero R, Lo Iacono M, Tetta C, et al. Endothelial progenitor cell derived microvesicles activate an
                   angiogenic program in endothelial cells by a horizontal transfer of mRNA. Blood 2007;110:2440-8.
               56.  Martin S, Tesse A, Hugel B, Martínez MC, Morel O, et al. Shed membrane particles from T lymphocytes impair endothelial function and
                   regulate endothelial protein expression. Circulation 2004;109:1653-9.
               57.  Genschmer KR, Russell DW, Lal C, Szul T, Bratcher PE, et al. Activated PMN exosomes: pathogenic entities causing matrix destruction
                   and disease in the lung. Cell 2019;176:113-26.e15.
               58.  Vats R, Brzoska T, Bennewitz MF, Jimenez MA, Pradhan-Sundd T, et al. Platelet extracellular vesicles drive Inflammasome-IL1β-
                   dependent lung injury in sickle cell disease. Am J Respir Crit Care Med 2020;201:33-46.
               59.  Zahran AM, Elsayh KI, Saad K, Embaby MM, Youssef MAM, et al. Circulating microparticles in children with sickle cell anemia in a
                   tertiary center in upper Egypt. Clin Appl Thromb Hemost 2019;25:1076029619828839.
   111   112   113   114   115   116   117   118   119   120   121