Page 316 - Read Online
P. 316
Pejcic et al. Vessel Plus 2019;3:32 I http://dx.doi.org/10.20517/2574-1209.2019.18 Page 11 of 12
Human Aorta Considering Age and Gender. J Biomech Eng 2019 doi: 10.1115/1.4043877.
41. Hemmasizadeh A, Autieri M, Darvish K. Multilayer material properties of aorta determined from nanoindentation tests. J Mech Behav
Biomed 2012;15:199-207.
42. Manopoulos C. Identification of regional/layer differences in failure properties and thickness as important biomechanical factors
responsible for the initiation of aortic dissections. J Biomech 2018;80:102-10.
43. Marino M, Vairo G. Multiscale elastic models of collagen bio-structures: from cross-linked molecules to soft tissues. Comput Method
Biomec 2013;14:73-102.
44. Brüel A, Ortoft G, Oxlund H. Inhibition of cross-links in collagen is associated with reduced stiffness of the aorta in young rats.
Atherosclerosis 1998;140:135-45.
45. Akhtar R, Schwarzer N, Sherratt MJ, Watson RE, Graham HK, et al. Nanoindentation of histological specimens: mapping the elastic
properties of soft tissues. J Mater Res 2009;24:638-46.
46. Taghizadeh H, Tafazzoli-Shadpour M, Shadmehr MB, Fatouraee N. Evaluation of biaxial mechanical properties of aortic media based
on the lamellar microstructure. Materials (Basel) 2015;8:302-16.
47. Holzapfel GA, Niestrawska JA, Ogden RW, Reinisch AJ, Schriefl AJ. Modelling non-symmetric collagen fibre dispersion in arterial
walls. J R Soc Interface 2015;12:20150188.
48. Iliopoulos DC, Kritharis EP, Giagini AT, Papadodima SA, Sokolis DP. Ascending thoracic aortic aneurysms are associated with
compositional remodeling and vessel stiffening but not weakening in age-matched subjects. J Thorac Cardiov Sur 2009;137:101-9.
49. Sokolis DP, Kritharis EP, Giagini AT, Lampropoulos KM, Papadodima SA, et al. Biomechanical response of ascending thoracic aortic
aneurysms: association with structural remodelling. Comput Method Biomec 2012;15:231-48.
50. Schriefl AJ, Zeindlinger G, Pierce DM, Regitnig P, Holzapfel GA. Determination of the layer-specific distributed collagen fibre
orientations in human thoracic and abdominal aortas and common iliac arteries. J R Soc Interface 2011;9:1275-86.
51. Maceri F, Marino M, Vairo G. Age-dependent arterial mechanics via a multiscale elastic approach. Int J Numer Meth Eng 2013;14:141-
51.
52. Carallo C, Irace C, Pujia A, De Franceschi MS, Crescenzo A, et al. Evaluation of common carotid hemodynamic forces. Relations with
wall thickening. Hypertension 1999;34:217-21.
53. Cavalcante JL, Lima JA, Redheuil A, Al-Mallah MH. Aortic stiffness: current understanding and future directions. J Am Coll Cardiol
2011;57:1511-22.
54. García-Herrera CM, Atienza JM, Rojo FJ, Claes E, Guinea GV, et al. Mechanical behaviour and rupture of normal and pathological
human ascending aortic wall. Med Biol Eng Comput 2012;50:559-66.
55. Morrison TM, Choi G, Zarins CK, Taylor CA. Circumferential and longitudinal cyclic strain of the human thoracic aorta: age-related
changes. J Vasc Surg 2009;49:1029-36.
56. Deveja RP, Iliopoulos DC, Kritharis EP, Angouras DC, Sfyris D, et al. Effect of aneurysm and bicuspid aortic valve on layer-specific
ascending aorta mechanics. Ann Thorac Surg 2018;106:1692-701.
57. Iliopoulos DC, Kritharis EP, Boussias S, Demis A, Iliopoulos CD, et al. Biomechanical properties and histological structure of sinus of
Valsalva aneurysms in relation to age and region. J Biomech 2013;46:931-940.
58. Tracy RE, Eigenbrodt ML. Coronary artery circumferential stress: departure from Laplace expectations with aging. ScientificWorldJournal
2009;9:946-60.
59. Taylor CA, Steinman DA. Image-based modeling of blood flow and vessel wall dynamics: applications, methods and future directions:
sixth international bio-fluid mechanics symposium and workshop, March 28-30, 2008 Pasadena, California. Ann Biomed Eng
2010;38:1188-203.
60. Cebral JR, Duan X, Chung BJ, Putman C, Aziz K, et al. Wall mechanical properties and hemodynamics of unruptured intracranial
aneurysms. AJNR Am J Neuroradiol 2015;36:1695-703.
61. Prado CM, Ramos SG, Elias J, Rossi MA. Turbulent blood flow plays an essential localizing role in the development of atherosclerotic
lesions in experimentally induced hypercholesterolaemia in rats. Int J Exp Pathol 2008;89:72-80.
62. Zaroff LI, Kreel I, Sobel HJ, Baronofsky ID. Multiple and infraductal coarctations of the aorta. Circulation 1959;20:910-7.
63. Wilton E, Jahangiri M. Post-stenotic aortic dilatation. J Cardiothorac Surg 2006;1:7.
64. Khanafer KM, Bull JL, Upchurch GR, Berguer R. Turbulence significantly increases pressure and fluid shear stress in an aortic
aneurysm model under resting and exercise flow conditions. Ann Vasc Surg 2007;21:67-74.
65. Les AS, Shadden SC, Figueroa CA, Park JM, Tedesco MM, et al. Quantification of hemodynamics in abdominal aortic aneurysms
during rest and exercise using magnetic resonance imaging and computational fluid dynamics. Ann Biomed Eng 2010;38:1288-313.
66. Lasheras JC. The biomechanics of arterial aneurysms. Annu Rev Fluid Mech 2007;39:293-319.
67. London GM, Pannier B. Arterial functions: how to interpret the complex physiology. Nephrol Dial Transplant 2010;25:3815-23.
68. Tian L, Wang Z, Lakes RS, Chesler NC. Comparison of approaches to quantify arterial damping capacity from pressurization tests on
mouse conduit arteries. J Biomech Eng 2013;135:54504.
69. Rosset E, Brunet C, Rieu R, Rolland P, Pellissier JF, et al. Viscoelastic properties of human arteries methodology and preliminary
results. Surg Radiol Anat 1996;18:89-96.
70. Delgadillo JOV, Delorme S, Mora V, DiRaddo R, Hatzikiriakos SG. Effect of deformation rate on the mechanical properties of arteries.
J Biomed Sci Engine 2010;3:124-37.
71. Cheng CP, Wilson NM, Hallett RL, Herfkens RJ, Taylor CA. In vivo MR angiographic quantification of axial and twisting deformations