Page 315 - Read Online
P. 315

Page 10 of 12                                                      Pejcic et al. Vessel Plus 2019;3:32  I  http://dx.doi.org/10.20517/2574-1209.2019.18

               7.   Malek A, Izumo S. Physiological fluid shear stress causes downregulation of endothelin-1 mRNA in bovine aortic endothelium. Am J
                   Physiol 1992;263:C389-96.
               8.   Sokolis DP. Passive mechanical properties and structure of the aorta: segmental analysis. Acta Physiol (Oxf) 2007;190:277-89.
               9.   Iliopoulos DC, Deveja RP, Kritharis EP, Perrea D, Sionis GD, et al. Regional and directional variations in the mechanical properties of
                   ascending thoracic aortic aneurysms. Med Eng Phys 2009;31:1-9.
               10.  Sokolis DP, Kritharis EP, Iliopoulos DC. Effect of layer heterogeneity on the biomechanical properties of ascending thoracic aortic
                   aneurysms. Med Biol Eng Comput 2012;50:1227-37.
               11.  Khanafer K, Duprey A, Zainal M, Schlicht M, Williams D, et al. Determination of the elastic modulus of ascending thoracic aortic
                   aneurysm at different ranges of pressure using uniaxial tensile testing. J Thorac Cardiovasc Surg 2011;142:682-6.
               12.  Sassani SG, Tsangaris S, Sokolis DP. Layer-and region-specific material characterization of ascending thoracic aortic aneurysms by
                   microstructure-based models. J Biomech 2015;48:3757-65.
               13.  Guinea GV, Atienza JM, Rojo FJ, García-Herrera CM, Yiqun L, et al. Factors influencing the mechanical behaviour of healthy human
                   descending thoracic aorta. Physiol Meas 2010;31:1553-65.
               14.  Haskett D, Johnson G, Zhou A, Utzinger U, Vande Geest J. Microstructural and biomechanical alterations of the human aorta as a
                   function of age and location. Biomech Model Mechanobiol 2010;9:725-36.
               15.  Geest J, Sacks MS, Vorp D. The effects of aneurysm on the biaxial mechanical behavior of human abdominal aorta. J Biomech
                   2006;39:1324-34.
               16.  Zemánek M, Burša J, Děták M. Biaxial tension tests with soft tissues of arterial wall. Eng Mechanics 2009;16:3-11.
               17.  Azadani AN, Chitsaz S, Matthews PB, Jaussaud N, Leung J, et al. Comparison of mechanical properties of human ascending aorta and
                   aortic sinuses. Ann Thorac Surg 2012;93:87-94.
               18.  Bellini C, Ferruzzi J, Roccabianca S, Di Martino ES, Humphrey JD. A microstructurally motivated model of arterial wall mechanics
                   with mechanobiological implications. Ann Biomed Eng 2014;42:488-502.
               19.  Alreshidan M, Shahmansouri N, Chung J, Lash V, Emmott A, et al. Obtaining the biomechanical behavior of ascending aortic aneurysm
                   via the use of novel speckle tracking echocardiography. J Thorac Cardiovasc Surg 2017;153:781-8.
               20.  Marra SP, Kennedy FE, Kinkaid JN, Fillinger MF. Elastic and rupture properties of porcine aortic tissue measured using inflation
                   testing. Cardiovasc Eng 2006;6123-31.
               21.  Waldman S, Sacks MS, Lee J. Boundary conditions during biaxial testing of planar connective tissues Part II Fiber orientation. J Mater
                   Sci Mater Med 2002;21:1215-21.
               22.  Mohan D, Melvin J. Failure properties of passive human aortic tissue. II-Biaxial tension tests. J Biomech 1983;16:31-44.
               23.  Romo A, Badel P, Duprey A, Favre JP, Avril S. In vitro analysis of localized aneurysm rupture. J Biomech 2014;47:607-16.
               24.  Kim JH, Avril S, Duprey A, Favre JP. Experimental characterization of rupture in human aortic aneurysms using a full-field
                   measurement technique. Biomech Model Mechanobiol 2012;11:841-53.
               25.  Labrosse MR, Beller CJ, Mesana T, Veinot JP. Mechanical behavior of human aortas: experiments, material constants and 3-D finite
                   element modeling including residual stress. J Biomech 2009;42:996-1004.
               26.  Labrosse MR, Gerson ER, Veinot JP, Beller CJ. Mechanical characterization of human aortas from pressurization testing and a paradigm
                   shift for circumferential residual stress. J Mech Behav Biomed 2013;17:44-55.
               27.  Courtial EJ, Orkisz M, Douek PC, Huet L, Fulchiron R. Identifying hyper-viscoelastic model parameters from an inflation-extension
                   test and ultrasound images. Exp Mech 2015;55:1353-66.
               28.  Horný L, Netušil M, Voňavková T. Axial prestretch and circumferential distensibility in biomechanics of abdominal aorta. Biomech
                   Model Mechanobiol 2014;13:783-99.
               29.  Wang R, Gleason RL Jr. A mechanical analysis of conduit arteries accounting for longitudinal residual strains. Ann Biomed Eng
                   2010;38:1377-87.
               30.  Chaudhry HR, Bukiet B, Davis A, Ritter AB, Findley T. Residual stresses in oscillating thoracic arteries reduce circumferential stresses
                   and stress gradients. J Biomech 1997;30:57-62.
               31.  Chuong CJ, Fung YC. Three-dimensional stress distribution in arteries. J Biomech Eng 1983;105:268-74.
               32.  Chuong CJ, Fung YC. On residual stresses in arteries. J Biomech Eng 1986;108:189-92.
               33.  Fung YC. What are the residual stresses doing in our blood vessels? Ann Biomed Eng 1991;19:237-49.
               34.  Rachev A, Greenwald S. Residual strains in conduit arteries. J Biomech 2003;36:661-70.
               35.  Zheng X, Ren J. Effects of the three-dimensional residual stresses on the mechanical properties of arterial walls. J Theor Biol
                   2016;393:118-26.
               36.  Cardamone L, Valentín A, Eberth JF, Humphrey JD. Origin of axial prestretch and residual stress in arteries. Biomech Model
                   Mechanobiol 2009;8:431-46.
               37.  Sokolis DP, Savva GD, Papadodima SA, Kourkoulis SK. Regional distribution of circumferential residual strains in the human aorta
                   according to age and gender. J Mech Behav Biomed Mater 2017;67:87-100.
               38.  Holzapfel GA, Sommer G, Auer M, Regitnig P, Ogden RW. Layer-specific 3D residual deformations of human aortas with non-
                   atherosclerotic intimal thickening. 2007;35:530-45.
               39.  Sokolis DP. Effects of aneurysm on the directional, regional, and layer distribution of residual strains in ascending thoracic aorta. J
                   Mech Behav Biomed Mater 2015;46:229-43.
               40.  Sokolis DP, Bompas A, Papadodima S, Kourkoulis SK. Variation of Axial Residual Strains Along the Course and Circumference of
   310   311   312   313   314   315   316   317   318   319   320