Page 55 - Read Online
P. 55

Zhang et al. Vessel Plus 2021;5:48  https://dx.doi.org/10.20517/2574-1209.2021.64  Page 9 of 14

               14.       Laberge S, Labauge P, Maréchal E, Maciazek J, Tournier-Lasserve E. Genetic heterogeneity and absence of founder effect in a series
                    of 36 French cerebral cavernous angiomas families. Eur J Hum Genet 1999;7:499-504.  DOI  PubMed
               15.       Dupré N, Verlaan DJ, Hand CK, et al. Linkage to the CCM2 locus and genetic heterogeneity in familial cerebral cavernous
                    malformation. Can J Neurol Sci 2003;30:122-8.  DOI  PubMed
               16.       Zhang J, Clatterbuck RE, Rigamonti D, Dietz HC. Mutations in KRIT1 in familial cerebral cavernous malformations. Neurosurgery
                    2000;46:1272-7; discussion 1277.  DOI  PubMed
               17.       Sahoo T, Johnson EW, Thomas JW, et al. Mutations in the gene encoding KRIT1, a Krev-1/rap1a binding protein, cause cerebral
                    cavernous malformations (CCM1). Hum Mol Genet 1999;8:2325-33.  DOI  PubMed
               18.       Eerola I, Plate KH, Spiegel R, Boon LM, Mulliken JB, Vikkula M. KRIT1 is mutated in hyperkeratotic cutaneous capillary-venous
                    malformation associated with cerebral capillary malformation. Hum Mol Genet 2000;9:1351-5.  DOI  PubMed
               19.       Verlaan DJ, Siegel AM, Rouleau GA. Krit1 missense mutations lead to splicing errors in cerebral cavernous malformation. Am J
                    Hum Genet 2002;70:1564-7.  DOI  PubMed  PMC
               20.       Liquori CL, Berg MJ, Siegel AM, et al. Mutations in a gene encoding a novel protein containing a phosphotyrosine-binding domain
                    cause type 2 cerebral cavernous malformations. Am J Hum Genet 2003;73:1459-64.  DOI  PubMed  PMC
               21.       Bergametti F, Denier C, Labauge P, et al. Mutations within the programmed cell death 10 gene cause cerebral cavernous
                    malformations. Am J Hum Genet 2005;76:42-51.  DOI  PubMed  PMC
               22.       Ma X, Zhao H, Shan J, et al. PDCD10 interacts with Ste20-related kinase MST4 to promote cell growth and transformation via
                    modulation of the ERK pathway. Mol Biol Cell 2007;18:1965-78.  DOI  PubMed  PMC
               23.       Jiang X, Padarti A, Qu Y, et al. Alternatively spliced isoforms reveal a novel type of PTB domain in CCM2 protein. Sci Rep
                    2019;9:15808.  DOI  PubMed  PMC
               24.       Uhlik MT, Abell AN, Johnson NL, et al. Rac-MEKK3-MKK3 scaffolding for p38 MAPK activation during hyperosmotic shock. Nat
                    Cell Biol 2003;5:1104-10.  DOI  PubMed
               25.       Hilder TL, Malone MH, Bencharit S, et al. Proteomic identification of the cerebral cavernous malformation signaling complex. J
                    Proteome Res 2007;6:4343-55.  DOI  PubMed
               26.       Voss K, Stahl S, Schleider E, et al. CCM3 interacts with CCM2 indicating common pathogenesis for cerebral cavernous
                    malformations. Neurogenetics 2007;8:249-56.  DOI  PubMed
               27.       Zawistowski JS, Stalheim L, Uhlik MT, et al. CCM1 and CCM2 protein interactions in cell signaling: implications for cerebral
                    cavernous malformations pathogenesis. Hum Mol Genet 2005;14:2521-31.  DOI  PubMed
               28.       Zhang J, Rigamonti D, Dietz HC, Clatterbuck RE. Interaction between krit1 and malcavernin: implications for the pathogenesis of
                    cerebral cavernous malformations. Neurosurgery 2007;60:353-9; discussion 359.  DOI  PubMed
               29.       Padarti A, Zhang J. Recent advances in cerebral cavernous malformation research. Vessel Plus 2018;2:21.  DOI  PubMed  PMC
               30.       Sealy-Jefferson S, Wing JJ, Sánchez BN, et al. Age- and ethnic-specific sex differences in stroke risk. Gend Med 2012;9:121-8.  DOI
                    PubMed  PMC
               31.       Lisabeth L, Bushnell C. Stroke risk in women: the role of menopause and hormone therapy. Lancet Neurol 2012;11:82-91.  DOI
                    PubMed  PMC
               32.       Lisabeth L, Bushnell C. Stroke risk in women: the role of menopause and hormone therapy. Lancet Neurol 2012;11:125.  DOI
                    PubMed  PMC
               33.       Lisabeth LD, Baek J, Morgenstern LB, et al. Sex differences in the impact of acute stroke treatment in a population-based study: a
                    sex-specific propensity score approach. Ann Epidemiol 2017;27:493-8.e2.  DOI  PubMed  PMC
               34.       Shekhar S, Travis OK, He X, Roman RJ, Fan F. Menopause and ischemic stroke: a brief review. MOJ Toxicol 2017;3:00059.  DOI
                    PubMed  PMC
               35.       Blum A, Cannon RO 3rd. Effects of oestrogens and selective oestrogen receptor modulators on serum lipoproteins and vascular
                    function. Curr Opin Lipidol 1998;9:575-86.  DOI  PubMed
               36.       Komesaroff PA, Fullerton M, Esler MD, Dart A, Jennings G, Sudhir K. Low-dose estrogen supplementation improves vascular
                    function in hypogonadal men. Hypertension 2001;38:1011-6.  DOI  PubMed
               37.       Ness KF, Sharif I, Macpherson S et al. Modification of vascular function by the oestrogen receptor beta: the effect of ageing. Brit J
                    Pharmacol 2002.  DOI
               38.       White RE. Estrogen and vascular function. Vascul Pharmacol 2002;38:73-80.  DOI  PubMed
               39.       Djordjevic N, Babic G, Ognjanovic B, et al. Estrogen improves vascular function in preeclampsia via ROS reduction. Febs Journal
                    2012;279:429-112.
               40.       O'Donnell E, Goodman JM, Morris BL, Floras JS, Harvey PJ. Abnormal vascular function in physically active estrogen deficient
                    premenopausal women is not rectified by acute dynamic exercise. Circulation 2012;126:A15561.  DOI
               41.       Tiyerili V, Mueller CM, Nickenig G, Becher UM. Estrogen improves vascular function and morphology via peroxisome-proliferator-
                    activated-receptor gamma. Eur Heart J 2012;33:279.
               42.       Tiyerili V, Müller CF, Fung S, Panek D, Nickenig G, Becher UM. Estrogen improves vascular function via peroxisome-proliferator-
                    activated-receptor-γ. J Mol Cell Cardiol 2012;53:268-76.  DOI  PubMed
               43.       Meyer MR, Haas E, Prossnitz ER, Barton M. Non-genomic regulation of vascular cell function and growth by estrogen. Mol Cell
                    Endocrinol 2009;308:9-16.  DOI  PubMed  PMC
               44.       Su EJ, Lin ZH, Zeine R, et al. Estrogen receptor-beta mediates cyclooxygenase-2 expression and vascular prostanoid levels in human
                    placental villous endothelial cells. Am J Obstet Gynecol 2009;200:427.e1-427.e4278.  DOI  PubMed
               45.       Zhu Y, Bian Z, Lu P, et al. Abnormal vascular function and hypertension in mice deficient in estrogen receptor beta. Science
   50   51   52   53   54   55   56   57   58   59   60