Page 55 - Read Online
P. 55
Zhang et al. Vessel Plus 2021;5:48 https://dx.doi.org/10.20517/2574-1209.2021.64 Page 9 of 14
14. Laberge S, Labauge P, Maréchal E, Maciazek J, Tournier-Lasserve E. Genetic heterogeneity and absence of founder effect in a series
of 36 French cerebral cavernous angiomas families. Eur J Hum Genet 1999;7:499-504. DOI PubMed
15. Dupré N, Verlaan DJ, Hand CK, et al. Linkage to the CCM2 locus and genetic heterogeneity in familial cerebral cavernous
malformation. Can J Neurol Sci 2003;30:122-8. DOI PubMed
16. Zhang J, Clatterbuck RE, Rigamonti D, Dietz HC. Mutations in KRIT1 in familial cerebral cavernous malformations. Neurosurgery
2000;46:1272-7; discussion 1277. DOI PubMed
17. Sahoo T, Johnson EW, Thomas JW, et al. Mutations in the gene encoding KRIT1, a Krev-1/rap1a binding protein, cause cerebral
cavernous malformations (CCM1). Hum Mol Genet 1999;8:2325-33. DOI PubMed
18. Eerola I, Plate KH, Spiegel R, Boon LM, Mulliken JB, Vikkula M. KRIT1 is mutated in hyperkeratotic cutaneous capillary-venous
malformation associated with cerebral capillary malformation. Hum Mol Genet 2000;9:1351-5. DOI PubMed
19. Verlaan DJ, Siegel AM, Rouleau GA. Krit1 missense mutations lead to splicing errors in cerebral cavernous malformation. Am J
Hum Genet 2002;70:1564-7. DOI PubMed PMC
20. Liquori CL, Berg MJ, Siegel AM, et al. Mutations in a gene encoding a novel protein containing a phosphotyrosine-binding domain
cause type 2 cerebral cavernous malformations. Am J Hum Genet 2003;73:1459-64. DOI PubMed PMC
21. Bergametti F, Denier C, Labauge P, et al. Mutations within the programmed cell death 10 gene cause cerebral cavernous
malformations. Am J Hum Genet 2005;76:42-51. DOI PubMed PMC
22. Ma X, Zhao H, Shan J, et al. PDCD10 interacts with Ste20-related kinase MST4 to promote cell growth and transformation via
modulation of the ERK pathway. Mol Biol Cell 2007;18:1965-78. DOI PubMed PMC
23. Jiang X, Padarti A, Qu Y, et al. Alternatively spliced isoforms reveal a novel type of PTB domain in CCM2 protein. Sci Rep
2019;9:15808. DOI PubMed PMC
24. Uhlik MT, Abell AN, Johnson NL, et al. Rac-MEKK3-MKK3 scaffolding for p38 MAPK activation during hyperosmotic shock. Nat
Cell Biol 2003;5:1104-10. DOI PubMed
25. Hilder TL, Malone MH, Bencharit S, et al. Proteomic identification of the cerebral cavernous malformation signaling complex. J
Proteome Res 2007;6:4343-55. DOI PubMed
26. Voss K, Stahl S, Schleider E, et al. CCM3 interacts with CCM2 indicating common pathogenesis for cerebral cavernous
malformations. Neurogenetics 2007;8:249-56. DOI PubMed
27. Zawistowski JS, Stalheim L, Uhlik MT, et al. CCM1 and CCM2 protein interactions in cell signaling: implications for cerebral
cavernous malformations pathogenesis. Hum Mol Genet 2005;14:2521-31. DOI PubMed
28. Zhang J, Rigamonti D, Dietz HC, Clatterbuck RE. Interaction between krit1 and malcavernin: implications for the pathogenesis of
cerebral cavernous malformations. Neurosurgery 2007;60:353-9; discussion 359. DOI PubMed
29. Padarti A, Zhang J. Recent advances in cerebral cavernous malformation research. Vessel Plus 2018;2:21. DOI PubMed PMC
30. Sealy-Jefferson S, Wing JJ, Sánchez BN, et al. Age- and ethnic-specific sex differences in stroke risk. Gend Med 2012;9:121-8. DOI
PubMed PMC
31. Lisabeth L, Bushnell C. Stroke risk in women: the role of menopause and hormone therapy. Lancet Neurol 2012;11:82-91. DOI
PubMed PMC
32. Lisabeth L, Bushnell C. Stroke risk in women: the role of menopause and hormone therapy. Lancet Neurol 2012;11:125. DOI
PubMed PMC
33. Lisabeth LD, Baek J, Morgenstern LB, et al. Sex differences in the impact of acute stroke treatment in a population-based study: a
sex-specific propensity score approach. Ann Epidemiol 2017;27:493-8.e2. DOI PubMed PMC
34. Shekhar S, Travis OK, He X, Roman RJ, Fan F. Menopause and ischemic stroke: a brief review. MOJ Toxicol 2017;3:00059. DOI
PubMed PMC
35. Blum A, Cannon RO 3rd. Effects of oestrogens and selective oestrogen receptor modulators on serum lipoproteins and vascular
function. Curr Opin Lipidol 1998;9:575-86. DOI PubMed
36. Komesaroff PA, Fullerton M, Esler MD, Dart A, Jennings G, Sudhir K. Low-dose estrogen supplementation improves vascular
function in hypogonadal men. Hypertension 2001;38:1011-6. DOI PubMed
37. Ness KF, Sharif I, Macpherson S et al. Modification of vascular function by the oestrogen receptor beta: the effect of ageing. Brit J
Pharmacol 2002. DOI
38. White RE. Estrogen and vascular function. Vascul Pharmacol 2002;38:73-80. DOI PubMed
39. Djordjevic N, Babic G, Ognjanovic B, et al. Estrogen improves vascular function in preeclampsia via ROS reduction. Febs Journal
2012;279:429-112.
40. O'Donnell E, Goodman JM, Morris BL, Floras JS, Harvey PJ. Abnormal vascular function in physically active estrogen deficient
premenopausal women is not rectified by acute dynamic exercise. Circulation 2012;126:A15561. DOI
41. Tiyerili V, Mueller CM, Nickenig G, Becher UM. Estrogen improves vascular function and morphology via peroxisome-proliferator-
activated-receptor gamma. Eur Heart J 2012;33:279.
42. Tiyerili V, Müller CF, Fung S, Panek D, Nickenig G, Becher UM. Estrogen improves vascular function via peroxisome-proliferator-
activated-receptor-γ. J Mol Cell Cardiol 2012;53:268-76. DOI PubMed
43. Meyer MR, Haas E, Prossnitz ER, Barton M. Non-genomic regulation of vascular cell function and growth by estrogen. Mol Cell
Endocrinol 2009;308:9-16. DOI PubMed PMC
44. Su EJ, Lin ZH, Zeine R, et al. Estrogen receptor-beta mediates cyclooxygenase-2 expression and vascular prostanoid levels in human
placental villous endothelial cells. Am J Obstet Gynecol 2009;200:427.e1-427.e4278. DOI PubMed
45. Zhu Y, Bian Z, Lu P, et al. Abnormal vascular function and hypertension in mice deficient in estrogen receptor beta. Science