Page 58 - Read Online
P. 58

Page 12 of 14                  Zhang et al. Vessel Plus 2021;5:48  https://dx.doi.org/10.20517/2574-1209.2021.64

               106.      Kalani MY, Zabramski JM. Risk for symptomatic hemorrhage of cerebral cavernous malformations during pregnancy. J Neurosurg
                    2013;118:50-5.  DOI  PubMed
               107.      Witiw CD, Abou-Hamden A, Kulkarni AV, Silvaggio JA, Schneider C, Wallace MC. Cerebral cavernous malformations and
                    pregnancy: hemorrhage risk and influence on obstetrical management. Neurosurgery 2012;71:626-30; discussion 631.  DOI  PubMed
               108.      Yamasaki T, Handa H, Yamashita J, et al. Intracranial and orbital cavernous angiomas. A review of 30 cases. J Neurosurg
                    1986;64:197-208.  DOI  PubMed
               109.      Zauberman H, Feinsod M. Orbital hemangioma growth during pregnancy. Acta Ophthalmol (Copenh) 1970;48:929-33.  DOI
                    PubMed
               110.      Flemming KD, Goodman BP, Meyer FB. Successful brainstem cavernous malformation resection after repeated hemorrhages during
                    pregnancy. Surg Neurol 2003;60:545-7.  DOI  PubMed
               111.      Katayama Y, Tsubokawa T, Maeda T, Yamamoto T. Surgical management of cavernous malformations of the third ventricle. J
                    Neurosurg 1994;80:64-72.  DOI  PubMed
               112.      Porter PJ, Willinsky RA, Harper W, Wallace MC. Cerebral cavernous malformations: natural history and prognosis after clinical
                    deterioration with or without hemorrhage. J Neurosurg 1997;87:190-7.  DOI  PubMed
               113.      Pozzati E, Acciarri N, Tognetti F, Marliani F, Giangaspero F. Growth, subsequent bleeding, and de novo appearance of cerebral
                    cavernous angiomas. Neurosurgery 1996;38:662-70.  PubMed
               114.      Robinson JR, Awad IA, Little JR. Natural history of the cavernous angioma. J Neurosurg 1991;75:709-14.  DOI  PubMed
               115.      Safavi-Abbasi S, Feiz-Erfan I, Spetzler RF, et al. Hemorrhage of cavernous malformations during pregnancy and in the peripartum
                    period: causal or coincidence? Neurosurg Focus 2006;21:e12.  DOI  PubMed
               116.      Tibbetts TA, Mendoza-Meneses M, O'Malley BW, Conneely OM. Mutual and intercompartmental regulation of estrogen receptor
                    and progesterone receptor expression in the mouse uterus. Biol Reprod 1998;59:1143-52.  DOI  PubMed
               117.      Tan J, Paria BC, Dey SK, Das SK. Differential uterine expression of estrogen and progesterone receptors correlates with uterine
                    preparation for implantation and decidualization in the mouse. Endocrinology 1999;140:5310-21.  DOI  PubMed  PMC
               118.      Schwartz TH, Hibshoosh H, Riedel CJ. Estrogen and progesterone receptor-negative T11 vertebral hemangioma presenting as a
                    postpartum compression fracture: case report and management. Neurosurgery 2000;46:218-21.  PubMed
               119.      Morello A, Tumbiolo A, Pinto G, Lo Duca B. Cavernous angioma of the spinal dura. J Neurosurg Sci 1991;35:31-5.  PubMed
               120.      Yamada S, Nakase H, Nakagawa I, Nishimura F, Motoyama Y, Park YS. Cavernous malformations in pregnancy. Neurol Med Chir
                    (Tokyo) 2013;53:555-60.  DOI  PubMed
               121.      Detwiler PW, Porter RW, Zabramski JM, Spetzler RF. De novo formation of a central nervous system cavernous malformation:
                    implications for predicting risk of hemorrhage. Case report and review of the literature. J Neurosurg 1997;87:629-32.  DOI  PubMed
               122.      Goddard LM, Murphy TJ, Org T, et al. Progesterone receptor in the vascular endothelium triggers physiological uterine permeability
                    preimplantation. Cell 2014;156:549-62.  DOI  PubMed  PMC
               123.      Zhou Z, Rawnsley DR, Goddard LM, et al. The cerebral cavernous malformation pathway controls cardiac development via
                    regulation of endocardial MEKK3 signaling and KLF expression. Dev Cell 2015;32:168-80.  DOI  PubMed  PMC
               124.      Simmen RC, Heard ME, Simmen AM, et al. The Krüppel-like factors in female reproductive system pathologies. J Mol Endocrinol
                    2015;54:R89-R101.  DOI  PubMed  PMC
               125.      Robker RL, Russell DL, Espey LL, Lydon JP, O'Malley BW, Richards JS. Progesterone-regulated genes in the ovulation process:
                    ADAMTS-1 and cathepsin L proteases. Proc Natl Acad Sci U S A 2000;97:4689-94.  DOI  PubMed  PMC
               126.      Bagowski CP, Xiong W, Ferrell JE Jr. c-Jun N-terminal kinase activation in Xenopus laevis eggs and embryos. A possible non-
                    genomic role for the JNK signaling pathway. J Biol Chem 2001;276:1459-65.  DOI  PubMed
               127.      Abou-Fadel J, Jiang X, Padarti A, et al. CCM signaling complex (CSC) is a master regulator governing homeostasis of progesterone
                    and its mediated signaling cascades. bioRxiv 2020.  DOI
               128.      Liu H, Rigamonti D, Badr A, Zhang J. Ccm1 assures microvascular integrity during angiogenesis. Transl Stroke Res 2010;1:146-53.
                    DOI  PubMed  PMC
               129.      Liu H, Rigamonti D, Badr A, Zhang J. Ccm1 regulates microvascular morphogenesis during angiogenesis. J Vasc Res 2011;48:130-
                    40.  DOI  PubMed  PMC
               130.      Whitehead KJ, Plummer NW, Adams JA, Marchuk DA, Li DY. Ccm1 is required for arterial morphogenesis: implications for the
                    etiology of human cavernous malformations. Development 2004;131:1437-48.  DOI  PubMed
               131.      Boulday G, Blécon A, Petit N, et al. Tissue-specific conditional CCM2 knockout mice establish the essential role of endothelial
                    CCM2 in angiogenesis: implications for human cerebral cavernous malformations. Dis Model Mech 2009;2:168-77.  DOI  PubMed
                    PMC
               132.      Plummer NW, Squire TL, Srinivasan S, et al. Neuronal expression of the Ccm2 gene in a new mouse model of cerebral cavernous
                    malformations. Mamm Genome 2006;17:119-28.  DOI  PubMed
               133.      Cohen-Gadol AA, Jacob JT, Edwards DA, Krauss WE. Coexistence of intracranial and spinal cavernous malformations: a study of
                    prevalence and natural history. J Neurosurg 2006;104:376-81.  DOI  PubMed
               134.      Tang AT, Choi JP, Kotzin JJ, et al. Endothelial TLR4 and the microbiome drive cerebral cavernous malformations. Nature
                    2017;545:305-10.  DOI  PubMed  PMC
               135.      Clatterbuck RE, Eberhart CG, Crain BJ, Rigamonti D. Ultrastructural and immunocytochemical evidence that an incompetent blood-
                    brain barrier is related to the pathophysiology of cavernous malformations. J Neurol Neurosurg Psychiatry 2001;71:188-92.  DOI
                    PubMed  PMC
               136.      Lopez-Ramirez MA, Pham A, Girard R, et al. Cerebral cavernous malformations form an anticoagulant vascular domain in humans
   53   54   55   56   57   58   59   60   61   62   63