Page 58 - Read Online
P. 58
Page 12 of 14 Zhang et al. Vessel Plus 2021;5:48 https://dx.doi.org/10.20517/2574-1209.2021.64
106. Kalani MY, Zabramski JM. Risk for symptomatic hemorrhage of cerebral cavernous malformations during pregnancy. J Neurosurg
2013;118:50-5. DOI PubMed
107. Witiw CD, Abou-Hamden A, Kulkarni AV, Silvaggio JA, Schneider C, Wallace MC. Cerebral cavernous malformations and
pregnancy: hemorrhage risk and influence on obstetrical management. Neurosurgery 2012;71:626-30; discussion 631. DOI PubMed
108. Yamasaki T, Handa H, Yamashita J, et al. Intracranial and orbital cavernous angiomas. A review of 30 cases. J Neurosurg
1986;64:197-208. DOI PubMed
109. Zauberman H, Feinsod M. Orbital hemangioma growth during pregnancy. Acta Ophthalmol (Copenh) 1970;48:929-33. DOI
PubMed
110. Flemming KD, Goodman BP, Meyer FB. Successful brainstem cavernous malformation resection after repeated hemorrhages during
pregnancy. Surg Neurol 2003;60:545-7. DOI PubMed
111. Katayama Y, Tsubokawa T, Maeda T, Yamamoto T. Surgical management of cavernous malformations of the third ventricle. J
Neurosurg 1994;80:64-72. DOI PubMed
112. Porter PJ, Willinsky RA, Harper W, Wallace MC. Cerebral cavernous malformations: natural history and prognosis after clinical
deterioration with or without hemorrhage. J Neurosurg 1997;87:190-7. DOI PubMed
113. Pozzati E, Acciarri N, Tognetti F, Marliani F, Giangaspero F. Growth, subsequent bleeding, and de novo appearance of cerebral
cavernous angiomas. Neurosurgery 1996;38:662-70. PubMed
114. Robinson JR, Awad IA, Little JR. Natural history of the cavernous angioma. J Neurosurg 1991;75:709-14. DOI PubMed
115. Safavi-Abbasi S, Feiz-Erfan I, Spetzler RF, et al. Hemorrhage of cavernous malformations during pregnancy and in the peripartum
period: causal or coincidence? Neurosurg Focus 2006;21:e12. DOI PubMed
116. Tibbetts TA, Mendoza-Meneses M, O'Malley BW, Conneely OM. Mutual and intercompartmental regulation of estrogen receptor
and progesterone receptor expression in the mouse uterus. Biol Reprod 1998;59:1143-52. DOI PubMed
117. Tan J, Paria BC, Dey SK, Das SK. Differential uterine expression of estrogen and progesterone receptors correlates with uterine
preparation for implantation and decidualization in the mouse. Endocrinology 1999;140:5310-21. DOI PubMed PMC
118. Schwartz TH, Hibshoosh H, Riedel CJ. Estrogen and progesterone receptor-negative T11 vertebral hemangioma presenting as a
postpartum compression fracture: case report and management. Neurosurgery 2000;46:218-21. PubMed
119. Morello A, Tumbiolo A, Pinto G, Lo Duca B. Cavernous angioma of the spinal dura. J Neurosurg Sci 1991;35:31-5. PubMed
120. Yamada S, Nakase H, Nakagawa I, Nishimura F, Motoyama Y, Park YS. Cavernous malformations in pregnancy. Neurol Med Chir
(Tokyo) 2013;53:555-60. DOI PubMed
121. Detwiler PW, Porter RW, Zabramski JM, Spetzler RF. De novo formation of a central nervous system cavernous malformation:
implications for predicting risk of hemorrhage. Case report and review of the literature. J Neurosurg 1997;87:629-32. DOI PubMed
122. Goddard LM, Murphy TJ, Org T, et al. Progesterone receptor in the vascular endothelium triggers physiological uterine permeability
preimplantation. Cell 2014;156:549-62. DOI PubMed PMC
123. Zhou Z, Rawnsley DR, Goddard LM, et al. The cerebral cavernous malformation pathway controls cardiac development via
regulation of endocardial MEKK3 signaling and KLF expression. Dev Cell 2015;32:168-80. DOI PubMed PMC
124. Simmen RC, Heard ME, Simmen AM, et al. The Krüppel-like factors in female reproductive system pathologies. J Mol Endocrinol
2015;54:R89-R101. DOI PubMed PMC
125. Robker RL, Russell DL, Espey LL, Lydon JP, O'Malley BW, Richards JS. Progesterone-regulated genes in the ovulation process:
ADAMTS-1 and cathepsin L proteases. Proc Natl Acad Sci U S A 2000;97:4689-94. DOI PubMed PMC
126. Bagowski CP, Xiong W, Ferrell JE Jr. c-Jun N-terminal kinase activation in Xenopus laevis eggs and embryos. A possible non-
genomic role for the JNK signaling pathway. J Biol Chem 2001;276:1459-65. DOI PubMed
127. Abou-Fadel J, Jiang X, Padarti A, et al. CCM signaling complex (CSC) is a master regulator governing homeostasis of progesterone
and its mediated signaling cascades. bioRxiv 2020. DOI
128. Liu H, Rigamonti D, Badr A, Zhang J. Ccm1 assures microvascular integrity during angiogenesis. Transl Stroke Res 2010;1:146-53.
DOI PubMed PMC
129. Liu H, Rigamonti D, Badr A, Zhang J. Ccm1 regulates microvascular morphogenesis during angiogenesis. J Vasc Res 2011;48:130-
40. DOI PubMed PMC
130. Whitehead KJ, Plummer NW, Adams JA, Marchuk DA, Li DY. Ccm1 is required for arterial morphogenesis: implications for the
etiology of human cavernous malformations. Development 2004;131:1437-48. DOI PubMed
131. Boulday G, Blécon A, Petit N, et al. Tissue-specific conditional CCM2 knockout mice establish the essential role of endothelial
CCM2 in angiogenesis: implications for human cerebral cavernous malformations. Dis Model Mech 2009;2:168-77. DOI PubMed
PMC
132. Plummer NW, Squire TL, Srinivasan S, et al. Neuronal expression of the Ccm2 gene in a new mouse model of cerebral cavernous
malformations. Mamm Genome 2006;17:119-28. DOI PubMed
133. Cohen-Gadol AA, Jacob JT, Edwards DA, Krauss WE. Coexistence of intracranial and spinal cavernous malformations: a study of
prevalence and natural history. J Neurosurg 2006;104:376-81. DOI PubMed
134. Tang AT, Choi JP, Kotzin JJ, et al. Endothelial TLR4 and the microbiome drive cerebral cavernous malformations. Nature
2017;545:305-10. DOI PubMed PMC
135. Clatterbuck RE, Eberhart CG, Crain BJ, Rigamonti D. Ultrastructural and immunocytochemical evidence that an incompetent blood-
brain barrier is related to the pathophysiology of cavernous malformations. J Neurol Neurosurg Psychiatry 2001;71:188-92. DOI
PubMed PMC
136. Lopez-Ramirez MA, Pham A, Girard R, et al. Cerebral cavernous malformations form an anticoagulant vascular domain in humans