Page 26 - Read Online
P. 26

Page 12 of 14                   Ricci et al. Vessel Plus 2021;5:31  https://dx.doi.org/10.20517/2574-1209.2021.28

                   venous anomaly association and lesion phenotype. AJNR Am J Neuroradiol 2010;31:377-82.  DOI  PubMed  PMC
               4.       Labauge P, Brunereau L, Coubes P, et al. Appearance of new lesions in two nonfamilial cerebral cavernoma patients. Eur Neurol
                   2001;45:83-8.  DOI  PubMed
               5.       Verlaan DJ, Laurent SB, Sure U, et al. CCM1 mutation screen of sporadic cases with cerebral cavernous malformations. Neurology
                   2004;62:1213-5.  DOI  PubMed
               6.       Rigamonti D, Hadley MN, Drayer BP, et al. Cerebral cavernous malformations. Incidence and familial occurrence. N Engl J Med
                   1988;319:343-7.  DOI  PubMed
               7.       Sirvente J, Enjolras O, Wassef M, Tournier-Lasserve E, Labauge P. Frequency and phenotypes of cutaneous vascular malformations in
                   a consecutive series of 417 patients with familial cerebral cavernous malformations. J Eur Acad Dermatol Venereol 2009;23:1066-72.
                   DOI  PubMed
               8.       Labauge P, Krivosic V, Denier C, Tournier-Lasserve E, Gaudric A. Frequency of retinal cavernomas in 60 patients with familial
                   cerebral cavernomas: a clinical and genetic study. Arch Ophthalmol 2006;124:885-6.  DOI  PubMed
               9.       Laberge-le Couteulx S, Jung HH, Labauge P, et al. Truncating mutations in CCM1, encoding KRIT1, cause hereditary cavernous
                   angiomas. Nat Genet 1999;23:189-93.  DOI  PubMed
               10.      Denier C, Goutagny S, Labauge P, et al; Société Française de Neurochirurgie. Mutations within the MGC4607 gene cause cerebral
                   cavernous malformations. Am J Hum Genet 2004;74:326-37.  DOI  PubMed  PMC
               11.      Bergametti F, Denier C, Labauge P, et al; Société Française de Neurochirurgie. Mutations within the programmed cell death 10 gene
                   cause cerebral cavernous malformations. Am J Hum Genet 2005;76:42-51.  DOI  PubMed  PMC
               12.      Morrison L, Akers A. Cerebral cavernous malformation, familial. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH,
                   Mirzaa G, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2021.
               13.      Spiegler S, Rath M, Paperlein C, Felbor U. Cerebral cavernous malformations: an update on prevalence, molecular genetic analyses,
                   and genetic counselling. Mol Syndromol 2018;9:60-9.  DOI  PubMed  PMC
               14.      Stenson PD, Mort M, Ball EV, et al. The Human Gene Mutation Database (HGMD®): optimizing its use in a clinical diagnostic or
                   research setting. Hum Genet 2020;139:1197-207.  DOI  PubMed  PMC
               15.      Clatterbuck RE, Eberhart CG, Crain BJ, Rigamonti D. Ultrastructural and immunocytochemical evidence that an incompetent blood-
                   brain barrier is related to the pathophysiology of cavernous malformations. J Neurol Neurosurg Psychiatry 2001;71:188-92.  DOI
                   PubMed  PMC
               16.      Gunel M, Laurans MS, Shin D, et al. KRIT1, a gene mutated in cerebral cavernous malformation, encodes a microtubule-associated
                   protein. Proc Natl Acad Sci U S A 2002;99:10677-82.  DOI  PubMed  PMC
               17.      Whitehead KJ, Plummer NW, Adams JA, Marchuk DA, Li DY. Ccm1 is required for arterial morphogenesis: implications for the
                   etiology of human cavernous malformations. Development 2004;131:1437-48.  DOI  PubMed
               18.      Yadla S, Jabbour PM, Shenkar R, Shi C, Campbell PG, Awad IA. Cerebral cavernous malformations as a disease of vascular
                   permeability: from bench to bedside with caution. Neurosurg Focus 2010;29:E4.  DOI  PubMed  PMC
               19.      McDonald DA, Shi C, Shenkar R, et al. Lesions from patients with sporadic cerebral cavernous malformations harbor somatic
                   mutations in the CCM genes: evidence for a common biochemical pathway for CCM pathogenesis. Hum Mol Genet 2014;23:4357-70.
                   DOI  PubMed  PMC
               20.      Seker A, Pricola KL, Guclu B, Ozturk AK, Louvi A, Gunel M. CCM2 expression parallels that of CCM1. Stroke 2006;37:518-23.
                   DOI  PubMed
               21.      Stockton RA, Shenkar R, Awad IA, Ginsberg MH. Cerebral cavernous malformations proteins inhibit Rho kinase to stabilize vascular
                   integrity. J Exp Med 2010;207:881-96.  DOI  PubMed  PMC
               22.      Glading A, Han J, Stockton RA, Ginsberg MH. KRIT-1/CCM1 is a Rap1 effector that regulates endothelial cell cell junctions. J Cell
                   Biol 2007;179:247-54.  DOI  PubMed  PMC
               23.      Pagenstecher A, Stahl S, Sure U, Felbor U. A two-hit mechanism causes cerebral cavernous malformations: complete inactivation of
                   CCM1, CCM2 or CCM3 in affected endothelial cells. Hum Mol Genet 2009;18:911-8.  DOI  PubMed  PMC
               24.      Haasdijk RA, Cheng C, Maat-Kievit AJ, Duckers HJ. Cerebral cavernous malformations: from molecular pathogenesis to genetic
                   counselling and clinical management. Eur J Hum Genet 2012;20:134-40.  DOI  PubMed  PMC
               25.      Marchuk DA, Srinivasan S, Squire TL, Zawistowski JS. Vascular morphogenesis: tales of two syndromes. Hum Mol Genet 2003;12
                   Spec No 1:R97-112.  DOI  PubMed
               26.      Faurobert E, Albiges-Rizo C. Recent insights into cerebral cavernous malformations: a complex jigsaw puzzle under construction.
                   FEBS J 2010;277:1084-96.  DOI  PubMed  PMC
               27.      Zawistowski JS, Serebriiskii IG, Lee MF, Golemis EA, Marchuk DA. KRIT1 association with the integrin-binding protein ICAP-1: a
                   new direction in the elucidation of cerebral cavernous malformations (CCM1) pathogenesis. Hum Mol Genet 2002;11:389-96.  DOI
                   PubMed
               28.      Scimone C, Donato L, Marino S, Alafaci C, D'Angelo R, Sidoti A. Vis-à-vis: a focus on genetic features of cerebral cavernous
                   malformations and brain arteriovenous malformations pathogenesis. Neurol Sci 2019;40:243-51.  DOI  PubMed
               29.      Czubayko M, Knauth P, Schlüter T, Florian V, Bohnensack R. Sorting nexin 17, a non-self-assembling and a PtdIns(3)P high class
                   affinity protein, interacts with the cerebral cavernous malformation related protein KRIT1. Biochem Biophys Res Commun
                   2006;345:1264-72.  DOI  PubMed
               30.      Guazzi P, Goitre L, Ferro E, et al. Identification of the Kelch family protein Nd1-L as a novel molecular interactor of KRIT1. PLoS
                   One 2012;7:e44705.  DOI  PubMed  PMC
               31.      Sedgwick SG, Smerdon SJ. The ankyrin repeat: a diversity of interactions on a common structural framework. Trends Biochem Sci
   21   22   23   24   25   26   27   28   29   30   31