Page 76 - Read Online
P. 76

Zhong et al. Soft Sci. 2025, 5, 3  https://dx.doi.org/10.20517/ss.2024.52       Page 15 of 15

                   Networks (BSN); 2022 Sep 27-30; Ioannina, Greece. IEEE; 2022. pp. 1-5.  DOI
               21.      Lee, D. H.; Yang, J. C.; Sim, J. Y.; Kang, H.; Kim, H. R.; Park, S. Bending sensor based on controlled microcracking regions for
                   application toward wearable electronics and robotics. ACS. Appl. Mater. Interfaces. 2022, 14, 31312-20.  DOI
               22.      Jan, A. A.; Kim, S.; Kim, S. A skin-wearable and self-powered laminated pressure sensor based on triboelectric nanogenerator for
                   monitoring human motion. Soft. Sci. 2024, 4, 10.  DOI
               23.      Gao, Z.; Ren, B.; Fang, Z.; Kang, H.; Han, J.; Li, J. Accurate recognition of object contour based on flexible piezoelectric and
                   piezoresistive dual mode strain sensors. Sens. Actuators. A. Phys. 2021, 332, 113121.  DOI
               24.      Chillara, V. S. C.; Ramanathan, A. K.; Dapino, M. J. Self-sensing piezoelectric bistable laminates for morphing structures. Smart.
                   Mater. Struct. 2020, 29, 085008.  DOI
               25.      Guess, M.; Soltis, I.; Rigo, B.; et al. Wireless batteryless soft sensors for ambulatory cardiovascular health monitoring. Soft. Sci. 2023,
                   3, 24.  DOI
               26.      Peng, Y.; Wang, J.; Tian, X.; Liu, T.; Geng, W.; Zhu, Z. An electronic skin strain sensor for adaptive angle calculation. IEEE. Sensors.
                   J. 2022, 22, 12629-36.  DOI
               27.      Huang, T.; He, P.; Wang, R.; et al. Porous fibers composed of polymer nanoball decorated graphene for wearable and highly sensitive
                   strain sensors. Adv. Funct. Mater. 2019, 29, 1903732.  DOI
               28.      Wang, X.; Qiu, Y.; Cao, W.; Hu, P. Highly stretchable and conductive core–sheath chemical vapor deposition graphene fibers and
                   their applications in safe strain sensors. Chem. Mater. 2015, 27, 6969-75.  DOI
               29.      Wang, R.; Jiang, N.; Su, J.; et al. A Bi-sheath fiber sensor for giant tensile and torsional displacements. Adv. Funct. Mater. 2017, 27,
                   1702134.  DOI
               30.      To, C.; Hellebrekers, T.; Jung, J.; Yoon, S. J.; Park, Y. A soft optical waveguide coupled with fiber optics for dynamic pressure and
                   strain sensing. IEEE. Robot. Autom. Lett. 2018, 3, 3821-7.  DOI
               31.      Wu, C.; Liu, X.; Ying, Y. Soft and stretchable optical waveguide: light delivery and manipulation at complex biointerfaces creating
                   unique windows for on-body sensing. ACS. Sens. 2021, 6, 1446-60.  DOI
               32.      Zhao, H.; O'Brien, K.; Li, S.; Shepherd, R. F. Optoelectronically innervated soft prosthetic hand via stretchable optical waveguides.
                   Sci. Robot. 2016, 1, eaai7529.  DOI  PubMed
               33.      Krauss, H.; Takemura, K. Stretchable optical waveguide sensor capable of two-degree-of-freedom strain sensing mediated by a
                   semidivided optical core. IEEE/ASME. Trans. Mechatron. 2022, 27, 2151-7.  DOI
               34.      Chen, W.; Xiong, C.; Liu, C.; Li, P.; Chen, Y. Fabrication and dynamic modeling of bidirectional bending soft actuator integrated with
                   optical waveguide curvature sensor. Soft. Robot. 2019, 6, 495-506.  DOI  PubMed  PMC
               35.      Kim, T.; Lee, S.; Hong, T.; Shin, G.; Kim, T.; Park, Y. L. Heterogeneous sensing in a multifunctional soft sensor for human-robot
                   interfaces. Sci. Robot. 2020, 5, eabc6878.  DOI
               36.      Bai, H.; Li, S.; Barreiros, J.; Tu, Y.; Pollock, C. R.; Shepherd, R. F. Stretchable distributed fiber-optic sensors. Science 2020, 370, 848-
                   52.  DOI
               37.      Liu, X.; Wang, L.; Xiang, Y.; et al. Magnetic soft microfiberbots for robotic embolization. Sci. Robot. 2024, 9, eadh2479.  DOI
                   PubMed
               38.      Xing, L.; Wang, X.; Li, M.; et al. Self-adhesive, stretchable waterborne polyurethane-based flexible film as wearable conformal strain
                   sensor for motion and health monitoring. Adv. Nanocompos. 2024, 1, 171-9.  DOI
               39.      Zhao, H.; Jalving, J.; Huang, R.; Knepper, R.; Ruina, A.; Shepherd, R. A helping hand: soft orthosis with integrated optical strain
                   sensors and EMG control. IEEE. Robot. Automat. Mag. 2016, 23, 55-64.  DOI
               40.      Bryant, F. Snell’s law of refraction. Phys. Bull. 1958, 9,317.  DOI
               41.      Gray, G. T.; Maudlin, P. J.; Hull, L. M.; Zuo, Q. K.; Chen, S. Predicting material strength, damage, and fracture The synergy between
                   experiment and modeling. J. Fail. Anal. Preven. 2005, 5, 7-17.  DOI
               42.      Zhang, J.; Lai, S.; Yu, H.; et al. Fruit classification utilizing a robotic gripper with integrated sensors and adaptive grasping. Math.
                   Probl. Eng. 2021, 2021, 1-15.  DOI
               43.      Liu, S.; Wang, Y.; Li, Z.; Jin, M.; Ren, L.; Liu, C. A fluid-driven soft robotic fish inspired by fish muscle architecture. Bioinspir.
                   Biomim. 2022, 17, 026009.  DOI
               44.      Li, G.; Chen, X.; Zhou, F.; et al. Self-powered soft robot in the Mariana Trench. Nature 2021, 591, 66-71.  DOI
               45.      Li, M.; He, B.; Liang, Z.; et al. An attention-controlled hand exoskeleton for the rehabilitation of finger extension and flexion using a
                   rigid-soft combined mechanism. Front. Neurorobot. 2019, 13, 34.  DOI  PubMed  PMC
   71   72   73   74   75   76   77   78   79   80   81