Page 17 - Read Online
P. 17

Page 14 of 15                         Romano et al. Soft Sci 2024;4:31  https://dx.doi.org/10.20517/ss.2024.24

               24.      Park YJ, Sharma BK, Shinde SM, et al. All MoS -based large area, skin-attachable active-matrix tactile sensor. ACS Nano
                                                      2
                   2019;13:3023-30.  DOI  PubMed
               25.      Massaroni C, Vitali L, Lo Presti D, Silvestri S, Schena E. Fully additively 3D manufactured conductive deformable sensors for
                   pressure sensing. Adv Intell Syst 2024;6:2300901.  DOI
               26.      Hu J, Dun G, Geng X, Chen J, Wu X, Ren TL. Recent progress in flexible micro-pressure sensors for wearable health monitoring.
                   Nanoscale Adv 2023;5:3131-45.  DOI  PubMed  PMC
               27.      Chun J, Lee KY, Kang CY, Kim MW, Kim SW, Baik JM. Embossed hollow hemisphere-based piezoelectric nanogenerator and highly
                   responsive pressure sensor. Adv Funct Mater 2014;24:2038-43.  DOI
               28.      Chi C, Sun X, Xue N, Li T, Liu C. Recent progress in technologies for tactile sensors. Sensors 2018;18:948.  DOI  PubMed  PMC
               29.      Metzger C, Fleisch E, Meyer J, et al. Flexible-foam-based capacitive sensor arrays for object detection at low cost. Appl Phys Lett
                   2008;92:013506.  DOI
               30.      He F, Huang Q, Qin M. A silicon directly bonded capacitive absolute pressure sensor. Sens Actuators A Phys 2007;135:507-14.  DOI
               31.      Wang X, Yu J, Cui Y, Li W. Research progress of flexible wearable pressure sensors. Sens Actuators A Phys 2021;330:112838.  DOI
               32.      Lei KF, Lee K, Lee M. A flexible PDMS capacitive tactile sensor with adjustable measurement range for plantar pressure
                   measurement. Microsyst Technol 2014;20:1351-8.  DOI
               33.      Rehan M, Saleem MM, Tiwana MI, Shakoor RI, Cheung R. A soft multi-axis high force range magnetic tactile sensor for force
                   feedback in robotic surgical systems. Sensors 2022;22:3500.  DOI  PubMed  PMC
               34.      Jiao J, Guo Y, Tong Q, et al. Stiffness-tunable and shape-locking soft actuators based on 3D-printed hybrid multi-materials. Soft Sci
                   2022;2:20.  DOI
               35.      Lin X, Han M. Recent progress in soft electronics and robotics based on magnetic nanomaterials. Soft Sci 2023;3:14.  DOI
               36.      Nguyen TV, Mizuki Y, Tsukagoshi T, Takahata T, Ichiki M, Shimoyama I. MEMS-based pulse wave sensor utilizing a piezoresistive
                   cantilever. Sensors 2020;20:1052.  DOI  PubMed  PMC
               37.      Kubba AE, Hasson A, Kubba AI, Hall G. A micro-capacitive pressure sensor design and modelling. J Sens Sens Syst 2016;5:95-112.
                   DOI
               38.      Parameswaran C, Gupta D. Large area flexible pressure/strain sensors and arrays using nanomaterials and printing techniques. Nano
                   Converg 2019;6:28.  DOI  PubMed  PMC
               39.      Romano C, Nicolò A, Innocenti L, et al. Respiratory rate estimation during walking and running using breathing sounds recorded with
                   a microphone. Biosensors 2023;13:637.  DOI
               40.      Romano C, Formica D, Schena E, Massaroni C. Investigation of body locations for cardiac and respiratory monitoring with skin-
                   interfaced inertial measurement unit sensors. IEEE Sensors J 2023;23:7806-15.  DOI
               41.      Romano C, Schena E, Silvestri S, Massaroni C. Non-contact respiratory monitoring using an RGB camera for real-world applications.
                   Sensors 2021;21:5126.  DOI  PubMed  PMC
               42.      Rinaldi A, Tamburrano A, Fortunato M, Sarto MS. A flexible and highly sensitive pressure sensor based on a PDMS foam coated with
                   graphene nanoplatelets. Sensors 2016;16:2148.  DOI  PubMed  PMC
               43.      Wei Y, Chen S, Lin Y, Yuan X, Liu L. Silver nanowires coated on cotton for flexible pressure sensors. J Mater Chem C 2016;4:935-
                   43.  DOI
               44.      Massaroni C, Vitali L, Presti Lo D, Silvestri S, Schena E. Design, development and characterization of a novel fully additively
                   manufactured deformable conductive force sensor. In: 2023 International Workshop on Biomedical Applications, Technologies and
                   Sensors (BATS); 2023 Sep 28-29; Catanzaro, Italy. IEEE; 2023. pp. 22-7.  DOI
               45.      Yuan J, Li Q, Ding L, et al. Carbon black/multi-walled carbon nanotube-based, highly sensitive, flexible pressure sensor. ACS Omega
                   2022;7:44428-37.  DOI  PubMed  PMC
               46.      Zhang F, Yang K, Pei Z, et al. A highly accurate flexible sensor system for human blood pressure and heart rate monitoring based on
                   graphene/sponge. RSC Adv 2022;12:2391-8.  DOI  PubMed  PMC
               47.      Fu J, Taher SE, Abu Al-rub RK, Zhang T, Chan V, Liao K. Engineering 3D-architected gyroid MXene scaffolds for ultrasensitive
                   micromechanical sensing. Adv Eng Mater 2022;24:2101388.  DOI
               48.      Qi Z, Zhang T, Zhang X, Xu Q, Cao K, Chen R. MXene-based flexible pressure sensor with piezoresistive properties significantly
                   enhanced by atomic layer infiltration. Nano Mater Sci 2023;5:439-46.  DOI
               49.      Zheng S, Wu X, Huang Y, et al. Highly sensitive and multifunctional piezoresistive sensor based on polyaniline foam for wearable
                   Human-Activity monitoring. Compos Part A Appl Sci Manuf 2019;121:510-6.  DOI
               50.      Kang F, Zhang W, Liu M, Liu F, Jia Z, Jia D. Highly flexible and sensitive Ti C  MXene@polyurethane composites for piezoresistive
                                                                       2
                                                                     3
                   pressure sensor. J Mater Sci 2022;57:12894-902.  DOI
               51.      Nicolò A, Massaroni C, Schena E, Sacchetti M. The importance of respiratory rate monitoring: from healthcare to sport and exercise.
                   Sensors 2020;20:6396.  DOI  PubMed  PMC
               52.      Masaoka Y, Homma I. Anxiety and respiratory patterns: their relationship during mental stress and physical load. Int J Psychophysiol
                   1997;27:153-9.  DOI  PubMed
               53.      Tarassenko L, Hann A, Young D. Integrated monitoring and analysis for early warning of patient deterioration. Br J Anaesth
                   2006;97:64-8.  DOI  PubMed
               54.      Lamberti JP. Respiratory monitoring in general care units. Respir Care 2020;65:870-81.  DOI  PubMed
               55.      Romano C, Innocenti L, Schena E, Sacchetti M, Nicolò A, Massaroni C. A signal quality index for improving the estimation of breath-
   12   13   14   15   16   17   18   19   20   21   22