Page 17 - Read Online
P. 17
Page 14 of 15 Romano et al. Soft Sci 2024;4:31 https://dx.doi.org/10.20517/ss.2024.24
24. Park YJ, Sharma BK, Shinde SM, et al. All MoS -based large area, skin-attachable active-matrix tactile sensor. ACS Nano
2
2019;13:3023-30. DOI PubMed
25. Massaroni C, Vitali L, Lo Presti D, Silvestri S, Schena E. Fully additively 3D manufactured conductive deformable sensors for
pressure sensing. Adv Intell Syst 2024;6:2300901. DOI
26. Hu J, Dun G, Geng X, Chen J, Wu X, Ren TL. Recent progress in flexible micro-pressure sensors for wearable health monitoring.
Nanoscale Adv 2023;5:3131-45. DOI PubMed PMC
27. Chun J, Lee KY, Kang CY, Kim MW, Kim SW, Baik JM. Embossed hollow hemisphere-based piezoelectric nanogenerator and highly
responsive pressure sensor. Adv Funct Mater 2014;24:2038-43. DOI
28. Chi C, Sun X, Xue N, Li T, Liu C. Recent progress in technologies for tactile sensors. Sensors 2018;18:948. DOI PubMed PMC
29. Metzger C, Fleisch E, Meyer J, et al. Flexible-foam-based capacitive sensor arrays for object detection at low cost. Appl Phys Lett
2008;92:013506. DOI
30. He F, Huang Q, Qin M. A silicon directly bonded capacitive absolute pressure sensor. Sens Actuators A Phys 2007;135:507-14. DOI
31. Wang X, Yu J, Cui Y, Li W. Research progress of flexible wearable pressure sensors. Sens Actuators A Phys 2021;330:112838. DOI
32. Lei KF, Lee K, Lee M. A flexible PDMS capacitive tactile sensor with adjustable measurement range for plantar pressure
measurement. Microsyst Technol 2014;20:1351-8. DOI
33. Rehan M, Saleem MM, Tiwana MI, Shakoor RI, Cheung R. A soft multi-axis high force range magnetic tactile sensor for force
feedback in robotic surgical systems. Sensors 2022;22:3500. DOI PubMed PMC
34. Jiao J, Guo Y, Tong Q, et al. Stiffness-tunable and shape-locking soft actuators based on 3D-printed hybrid multi-materials. Soft Sci
2022;2:20. DOI
35. Lin X, Han M. Recent progress in soft electronics and robotics based on magnetic nanomaterials. Soft Sci 2023;3:14. DOI
36. Nguyen TV, Mizuki Y, Tsukagoshi T, Takahata T, Ichiki M, Shimoyama I. MEMS-based pulse wave sensor utilizing a piezoresistive
cantilever. Sensors 2020;20:1052. DOI PubMed PMC
37. Kubba AE, Hasson A, Kubba AI, Hall G. A micro-capacitive pressure sensor design and modelling. J Sens Sens Syst 2016;5:95-112.
DOI
38. Parameswaran C, Gupta D. Large area flexible pressure/strain sensors and arrays using nanomaterials and printing techniques. Nano
Converg 2019;6:28. DOI PubMed PMC
39. Romano C, Nicolò A, Innocenti L, et al. Respiratory rate estimation during walking and running using breathing sounds recorded with
a microphone. Biosensors 2023;13:637. DOI
40. Romano C, Formica D, Schena E, Massaroni C. Investigation of body locations for cardiac and respiratory monitoring with skin-
interfaced inertial measurement unit sensors. IEEE Sensors J 2023;23:7806-15. DOI
41. Romano C, Schena E, Silvestri S, Massaroni C. Non-contact respiratory monitoring using an RGB camera for real-world applications.
Sensors 2021;21:5126. DOI PubMed PMC
42. Rinaldi A, Tamburrano A, Fortunato M, Sarto MS. A flexible and highly sensitive pressure sensor based on a PDMS foam coated with
graphene nanoplatelets. Sensors 2016;16:2148. DOI PubMed PMC
43. Wei Y, Chen S, Lin Y, Yuan X, Liu L. Silver nanowires coated on cotton for flexible pressure sensors. J Mater Chem C 2016;4:935-
43. DOI
44. Massaroni C, Vitali L, Presti Lo D, Silvestri S, Schena E. Design, development and characterization of a novel fully additively
manufactured deformable conductive force sensor. In: 2023 International Workshop on Biomedical Applications, Technologies and
Sensors (BATS); 2023 Sep 28-29; Catanzaro, Italy. IEEE; 2023. pp. 22-7. DOI
45. Yuan J, Li Q, Ding L, et al. Carbon black/multi-walled carbon nanotube-based, highly sensitive, flexible pressure sensor. ACS Omega
2022;7:44428-37. DOI PubMed PMC
46. Zhang F, Yang K, Pei Z, et al. A highly accurate flexible sensor system for human blood pressure and heart rate monitoring based on
graphene/sponge. RSC Adv 2022;12:2391-8. DOI PubMed PMC
47. Fu J, Taher SE, Abu Al-rub RK, Zhang T, Chan V, Liao K. Engineering 3D-architected gyroid MXene scaffolds for ultrasensitive
micromechanical sensing. Adv Eng Mater 2022;24:2101388. DOI
48. Qi Z, Zhang T, Zhang X, Xu Q, Cao K, Chen R. MXene-based flexible pressure sensor with piezoresistive properties significantly
enhanced by atomic layer infiltration. Nano Mater Sci 2023;5:439-46. DOI
49. Zheng S, Wu X, Huang Y, et al. Highly sensitive and multifunctional piezoresistive sensor based on polyaniline foam for wearable
Human-Activity monitoring. Compos Part A Appl Sci Manuf 2019;121:510-6. DOI
50. Kang F, Zhang W, Liu M, Liu F, Jia Z, Jia D. Highly flexible and sensitive Ti C MXene@polyurethane composites for piezoresistive
2
3
pressure sensor. J Mater Sci 2022;57:12894-902. DOI
51. Nicolò A, Massaroni C, Schena E, Sacchetti M. The importance of respiratory rate monitoring: from healthcare to sport and exercise.
Sensors 2020;20:6396. DOI PubMed PMC
52. Masaoka Y, Homma I. Anxiety and respiratory patterns: their relationship during mental stress and physical load. Int J Psychophysiol
1997;27:153-9. DOI PubMed
53. Tarassenko L, Hann A, Young D. Integrated monitoring and analysis for early warning of patient deterioration. Br J Anaesth
2006;97:64-8. DOI PubMed
54. Lamberti JP. Respiratory monitoring in general care units. Respir Care 2020;65:870-81. DOI PubMed
55. Romano C, Innocenti L, Schena E, Sacchetti M, Nicolò A, Massaroni C. A signal quality index for improving the estimation of breath-

