Page 122 - Read Online
P. 122

Page 12 of 13                         Zhang et al. Soft Sci. 2025, 5, 17  https://dx.doi.org/10.20517/ss.2024.68

               Consent for publication
               Not applicable.


               Copyright
               © The Author(s) 2025.


               REFERENCES
               1.       Jiang, Z.; Lee, Y. S.; Wang, Y.; John, H.; Fang, L.; Tang, Y. Advancements in flexible sensors for monitoring body movements during
                   sleep: a review. Sensors 2024, 24, 5091.  DOI  PubMed  PMC
               2.       Yuxin, P.; Li, S.; Xia, Z.; et al. Recent advances in flexible bending sensors and their applications. Int. J. Smart. Nano. Mat. 2024, 15,
                   697-729.  DOI
               3.       Sun, G.; Wang, P.; Jiang, Y.; Sun, H.; Meng, C.; Guo, S. Recent advances in flexible and soft gel-based pressure sensors. Soft. Sci.
                   2022, 2, 17.  DOI
               4.       Liu, Y.; Wang, H.; Zhao, W.; Zhang, M.; Qin, H.; Xie, Y. Flexible, stretchable sensors for wearable health monitoring: sensing
                   mechanisms, materials, fabrication strategies and features. Sensors 2018, 18, 645.  DOI  PubMed  PMC
               5.       Qi, J.; Yang, P.; Waraich, A.; Deng, Z.; Zhao, Y.; Yang, Y. Examining sensor-based physical activity recognition and monitoring for
                   healthcare using Internet of Things: a systematic review. J. Biomed. Inform. 2018, 87, 138-53.  DOI
               6.       Yang, Y.; Cui, T.; Li, D.; et al. Breathable electronic skins for daily physiological signal monitoring. Nanomicro. Lett. 2022, 14, 161.
                   DOI  PubMed  PMC
               7.       Yuan, Z.; Han, S.; Gao, W.; Pan, C. Flexible and stretchable strategies for electronic skins: materials, structure, and integration. ACS.
                   Appl. Electron. Mater. 2022, 4, 1-26.  DOI
               8.       Zhang, L.; He, J.; Liao, Y.; et al. A self-protective, reproducible textile sensor with high performance towards human–machine
                   interactions. J. Mater. Chem. A. 2019, 7, 26631-40.  DOI
               9.       Cao, M.; Su, J.; Fan, S.; Qiu, H.; Su, D.; Li, L. Wearable piezoresistive pressure sensors based on 3D graphene. Chem. Eng. J. 2021,
                   406, 126777.  DOI
               10.      Wang, H.; Li, Z.; Liu, Z.; et al. Flexible capacitive pressure sensors for wearable electronics. J. Mater. Chem. C. 2022, 10, 1594-605.
                   DOI
               11.      Guo, X.; Li, Y.; Hong, W.; et al. Bamboo-inspired, environmental friendly PDMS/plant fiber composites-based capacitive flexible
                   pressure sensors by origami for human–machine interaction. ACS. Sustain. Chem. Eng. 2024, 12, 4835-45.  DOI
               12.      Tajitsu, Y. Piezoelectret sensor made from an electro-spun fluoropolymer and its use in a wristband for detecting heart-beat signals.
                   IEEE. Trans. Dielect. Electr. Insul. 2015, 22, 1355-9.  DOI
               13.      Li, H.; Wu, K.; Xu, Z.; Wang, Z.; Meng, Y.; Li, L. Ultrahigh-sensitivity piezoresistive pressure sensors for detection of tiny pressure.
                   ACS. Appl. Mater. Interfaces. 2018, 10, 20826-34.  DOI
               14.      Yang, J. C.; Kim, J. O.; Oh, J.; et al. Microstructured porous pyramid-based ultrahigh sensitive pressure sensor insensitive to strain and
                   temperature. ACS. Appl. Mater. Interfaces. 2019, 11, 19472-80.  DOI
               15.      Park, J.; Lee, Y.; Hong, J.; et al. Giant tunneling piezoresistance of composite elastomers with interlocked microdome arrays for
                   ultrasensitive and multimodal electronic skins. ACS. Nano. 2014, 8, 4689-97.  DOI
               16.      Tao, L. Q.; Zhang, K. N.; Tian, H.; et al. Graphene-paper pressure sensor for detecting human motions. ACS. Nano. 2017, 11, 8790-5.
                   DOI
               17.      Wang, K.; He, Z.; Yu, Y. Preparation and performance optimization of flexible piezoresistive pressure senor. Electron. Comp. Mater.
                   2022, 41, 781.  DOI
               18.      Wang, P.; Liu, J.; Li, Y.; et al. Recent advances in wearable tactile sensors based on electrospun nanofiber platform. Adv. Sens. Res.
                   2023, 2, 2200047.  DOI
               19.      Wang, P.; Yu, W.; Li, G.; Meng, C.; Guo, S. Printable, flexible, breathable and sweatproof bifunctional sensors based on an all-
                   nanofiber platform for fully decoupled pressure–temperature sensing application. Chem. Eng. J. 2023, 452, 139174.  DOI
               20.      Sun, G.; Wang, P.; Meng, C. Flexible and breathable iontronic tactile sensor with personal thermal management ability for a
                   comfortable skin-attached sensing application. Nano. Energy. 2023, 118, 109006.  DOI
               21.      Qin, R.; Nong, J.; Wang, K.; et al. Recent advances in flexible pressure sensors based on MXene materials. Adv. Mater. 2024, 36,
                   e2312761.  DOI
               22.      Shu, J.; Gao, L.; Li, Y.; et al. MXene/tissue paper composites for wearable pressure sensors and thermotherapy electronics. Thin. Solid.
                   Films. 2022, 743, 139054.  DOI
               23.      Chang, K.; Guo, M.; Pu, L.; et al. Wearable nanofibrous tactile sensors with fast response and wireless communication. Chem. Eng. J.
                   2023, 451, 138578.  DOI
               24.      Shi, J.; Wang, L.; Dai, Z.; et al. Multiscale hierarchical design of a flexible piezoresistive pressure sensor with high sensitivity and
                   wide linearity range. Small 2018, 14, e1800819.  DOI
               25.      Wang, S.; Du, X.; Luo, Y.; et al. Hierarchical design of waterproof, highly sensitive, and wearable sensing electronics based on
                   MXene-reinforced durable cotton fabrics. Chem. Eng. J. 2021, 408, 127363.  DOI
   117   118   119   120   121   122   123   124   125   126   127