Page 99 - Read Online
P. 99
Kim et al. Soft Sci 2024;4:24 https://dx.doi.org/10.20517/ss.2024.09 Page 25 of 27
2016;28:6640-8. DOI PubMed
38. Zub K, Hoeppener S, Schubert US. Inkjet printing and 3D printing strategies for biosensing, analytical, and diagnostic applications.
Adv Mater 2022;34:e2105015. DOI PubMed
39. Hempel M, Nezich D, Kong J, Hofmann M. A novel class of strain gauges based on layered percolative films of 2D materials. Nano
Lett 2012;12:5714-8. DOI
40. Muth JT, Vogt DM, Truby RL, et al. Embedded 3D printing of strain sensors within highly stretchable elastomers. Adv Mater
2014;26:6307-12. DOI PubMed
41. Wang Y, Lee S, Yokota T, et al. A durable nanomesh on-skin strain gauge for natural skin motion monitoring with minimum
mechanical constraints. Sci Adv 2020;6:eabb7043. DOI PubMed PMC
42. Liu K, Ouyang B, Guo X, Guo Y, Liu Y. Advances in flexible organic field-effect transistors and their applications for flexible
electronics. npj Flex Electron 2022;6:1. DOI
43. So H, Sim JW, Kwon J, Yun J, Baik S, Chang WS. Carbon nanotube based pressure sensor for flexible electronics. Mater Res Bull
2013;48:5036-9. DOI
44. Fortunato E, Barquinha P, Martins R. Oxide semiconductor thin-film transistors: a review of recent advances. Adv Mater
2012;24:2945-86. DOI PubMed
45. Vigneshvar S, Sudhakumari CC, Senthilkumaran B, Prakash H. Recent advances in biosensor technology for potential applications -
an overview. Front Bioeng Biotechnol 2016;4:11. DOI PubMed PMC
46. Kim DW, Min SY, Lee Y, Jeong U. Transparent flexible nanoline field-effect transistor array with high integration in a large area.
ACS Nano 2020;14:907-18. DOI
47. Nela L, Tang J, Cao Q, Tulevski G, Han SJ. Large-area high-performance flexible pressure sensor with carbon nanotube active matrix
for electronic skin. Nano Lett 2018;18:2054-9. DOI PubMed
48. Someya T, Kato Y, Sekitani T, et al. Conformable, flexible, large-area networks of pressure and thermal sensors with organic
transistor active matrixes. Proc Natl Acad Sci U S A 2005;102:12321-5. DOI PubMed PMC
49. Kim KB, Baek HJ. Photoplethysmography in wearable devices: a comprehensive review of technological advances, current
challenges, and future directions. Electronics 2023;12:2923. DOI
50. Lee HE, Kim S, Ko J, et al. Skin-like oxide thin-film transistors for transparent displays. Adv Funct Mater 2016;26:6170-8. DOI
51. Wang J, Zhang F, Zhang J, et al. Key issues and recent progress of high efficient organic light-emitting diodes. J Photochem
Photobiol C Photochem Rev 2013;17:69-104. DOI
52. Jeon Y, Choi HR, Park KC, Choi KC. Flexible organic light-emitting-diode-based photonic skin for attachable phototherapeutics. J
Soc Inf Display 2020;28:324-32. DOI
53. Kim TH, Lee CS, Kim S, et al. Fully stretchable optoelectronic sensors based on colloidal quantum dots for sensing
photoplethysmographic signals. ACS Nano 2017;11:5992-6003. DOI
54. Yokota T, Zalar P, Kaltenbrunner M, et al. Ultraflexible organic photonic skin. Sci Adv 2016;2:e1501856. DOI PubMed PMC
55. Gillan L, Hiltunen J, Behfar MH, Rönkä K. Advances in design and manufacture of stretchable electronics. Jpn J Appl Phys
2022;61:SE0804. DOI
56. Lee HE, Lee D, Lee T, et al. Wireless powered wearable micro light-emitting diodes. Nano Energy 2019;55:454-62. DOI
57. Hu L, Choi J, Hwangbo S, et al. Flexible micro-LED display and its application in Gbps multi-channel visible light communication.
npj Flex Electron 2022;6:100. DOI
58. Baeg K, Lee J. Flexible electronic systems on plastic substrates and textiles for smart wearable technologies. Adv Mater Technol
2020;5:2000071. DOI
59. Hassan M, Abbas G, Li N, et al. Significance of flexible substrates for wearable and implantable devices: recent advances and
perspectives. Adv Mater Technol 2022;7:2100773. DOI
60. Someya T, Amagai M. Toward a new generation of smart skins. Nat Biotechnol 2019;37:382-8. DOI
61. Kim Y, Suh JM, Shin J, et al. Chip-less wireless electronic skins by remote epitaxial freestanding compound semiconductors. Science
2022;377:859-64. DOI
62. Kim JH, Park SY, Kim MK, et al. Long-term UV detecting wearable patches enabled by III-N compound semiconductor-based
microphotodetectors. Adv Opt Mater 2023;11:2203083. DOI
63. Kim JH, Joe DJ, Lee HE. Sweat-permeable electronic skin with a pattern of eyes for body temperature monitoring. Micro Nano Syst
Lett 2023;11:7. DOI
64. Yeon H, Lee H, Kim Y, et al. Long-term reliable physical health monitoring by sweat pore-inspired perforated electronic skins. Sci
Adv 2021;7:eabg8459. DOI PubMed PMC
65. Xu C, Song Y, Han M, Zhang H. Portable and wearable self-powered systems based on emerging energy harvesting technology.
Microsyst Nanoeng 2021;7:25. DOI PubMed PMC
66. Ali A, Shaukat H, Bibi S, Altabey WA, Noori M, Kouritem SA. Recent progress in energy harvesting systems for wearable
technology. Energy Strat Rev 2023;49:101124. DOI
67. Islam E, Abdullah AM, Chowdhury AR, et al. Electromagnetic-triboelectric-hybrid energy tile for biomechanical green energy
harvesting. Nano Energy 2020;77:105250. DOI
68. Wang H, Cheng J, Wang Z, Ji L, Wang Z. Triboelectric nanogenerators for human-health care. Sci Bull 2021;66:490-511. DOI
69. Niu S, Wang ZL. Theoretical systems of triboelectric nanogenerators. Nano Energy 2015;14:161-92. DOI

