Page 99 - Read Online
P. 99

Kim et al. Soft Sci 2024;4:24  https://dx.doi.org/10.20517/ss.2024.09           Page 25 of 27

                    2016;28:6640-8.  DOI  PubMed
               38.       Zub K, Hoeppener S, Schubert US. Inkjet printing and 3D printing strategies for biosensing, analytical, and diagnostic applications.
                    Adv Mater 2022;34:e2105015.  DOI  PubMed
               39.       Hempel M, Nezich D, Kong J, Hofmann M. A novel class of strain gauges based on layered percolative films of 2D materials. Nano
                    Lett 2012;12:5714-8.  DOI
               40.       Muth JT, Vogt DM, Truby RL, et al. Embedded 3D printing of strain sensors within highly stretchable elastomers. Adv Mater
                    2014;26:6307-12.  DOI  PubMed
               41.       Wang Y, Lee S, Yokota T, et al. A durable nanomesh on-skin strain gauge for natural skin motion monitoring with minimum
                    mechanical constraints. Sci Adv 2020;6:eabb7043.  DOI  PubMed  PMC
               42.       Liu K, Ouyang B, Guo X, Guo Y, Liu Y. Advances in flexible organic field-effect transistors and their applications for flexible
                    electronics. npj Flex Electron 2022;6:1.  DOI
               43.       So H, Sim JW, Kwon J, Yun J, Baik S, Chang WS. Carbon nanotube based pressure sensor for flexible electronics. Mater Res Bull
                    2013;48:5036-9.  DOI
               44.       Fortunato E, Barquinha P, Martins R. Oxide semiconductor thin-film transistors: a review of recent advances. Adv Mater
                    2012;24:2945-86.  DOI  PubMed
               45.       Vigneshvar S, Sudhakumari CC, Senthilkumaran B, Prakash H. Recent advances in biosensor technology for potential applications -
                    an overview. Front Bioeng Biotechnol 2016;4:11.  DOI  PubMed  PMC
               46.       Kim DW, Min SY, Lee Y, Jeong U. Transparent flexible nanoline field-effect transistor array with high integration in a large area.
                    ACS Nano 2020;14:907-18.  DOI
               47.       Nela L, Tang J, Cao Q, Tulevski G, Han SJ. Large-area high-performance flexible pressure sensor with carbon nanotube active matrix
                    for electronic skin. Nano Lett 2018;18:2054-9.  DOI  PubMed
               48.       Someya T, Kato Y, Sekitani T, et al. Conformable, flexible, large-area networks of pressure and thermal sensors with organic
                    transistor active matrixes. Proc Natl Acad Sci U S A 2005;102:12321-5.  DOI  PubMed  PMC
               49.       Kim KB, Baek HJ. Photoplethysmography in wearable devices: a comprehensive review of technological advances, current
                    challenges, and future directions. Electronics 2023;12:2923.  DOI
               50.       Lee HE, Kim S, Ko J, et al. Skin-like oxide thin-film transistors for transparent displays. Adv Funct Mater 2016;26:6170-8.  DOI
               51.       Wang J, Zhang F, Zhang J, et al. Key issues and recent progress of high efficient organic light-emitting diodes. J Photochem
                    Photobiol C Photochem Rev 2013;17:69-104.  DOI
               52.       Jeon Y, Choi HR, Park KC, Choi KC. Flexible organic light-emitting-diode-based photonic skin for attachable phototherapeutics. J
                    Soc Inf Display 2020;28:324-32.  DOI
               53.       Kim  TH,  Lee  CS,  Kim  S,  et  al.  Fully  stretchable  optoelectronic  sensors  based  on  colloidal  quantum  dots  for  sensing
                    photoplethysmographic signals. ACS Nano 2017;11:5992-6003.  DOI
               54.       Yokota T, Zalar P, Kaltenbrunner M, et al. Ultraflexible organic photonic skin. Sci Adv 2016;2:e1501856.  DOI  PubMed  PMC
               55.       Gillan L, Hiltunen J, Behfar MH, Rönkä K. Advances in design and manufacture of stretchable electronics. Jpn J Appl Phys
                    2022;61:SE0804.  DOI
               56.       Lee HE, Lee D, Lee T, et al. Wireless powered wearable micro light-emitting diodes. Nano Energy 2019;55:454-62.  DOI
               57.       Hu L, Choi J, Hwangbo S, et al. Flexible micro-LED display and its application in Gbps multi-channel visible light communication.
                    npj Flex Electron 2022;6:100.  DOI
               58.       Baeg K, Lee J. Flexible electronic systems on plastic substrates and textiles for smart wearable technologies. Adv Mater Technol
                    2020;5:2000071.  DOI
               59.       Hassan M, Abbas G, Li N, et al. Significance of flexible substrates for wearable and implantable devices: recent advances and
                    perspectives. Adv Mater Technol 2022;7:2100773.  DOI
               60.       Someya T, Amagai M. Toward a new generation of smart skins. Nat Biotechnol 2019;37:382-8.  DOI
               61.       Kim Y, Suh JM, Shin J, et al. Chip-less wireless electronic skins by remote epitaxial freestanding compound semiconductors. Science
                    2022;377:859-64.  DOI
               62.       Kim JH, Park SY, Kim MK, et al. Long-term UV detecting wearable patches enabled by III-N compound semiconductor-based
                    microphotodetectors. Adv Opt Mater 2023;11:2203083.  DOI
               63.       Kim JH, Joe DJ, Lee HE. Sweat-permeable electronic skin with a pattern of eyes for body temperature monitoring. Micro Nano Syst
                    Lett 2023;11:7.  DOI
               64.       Yeon H, Lee H, Kim Y, et al. Long-term reliable physical health monitoring by sweat pore-inspired perforated electronic skins. Sci
                    Adv 2021;7:eabg8459.  DOI  PubMed  PMC
               65.       Xu C, Song Y, Han M, Zhang H. Portable and wearable self-powered systems based on emerging energy harvesting technology.
                    Microsyst Nanoeng 2021;7:25.  DOI  PubMed  PMC
               66.       Ali A, Shaukat H, Bibi S, Altabey WA, Noori M, Kouritem SA. Recent progress in energy harvesting systems for wearable
                    technology. Energy Strat Rev 2023;49:101124.  DOI
               67.       Islam E, Abdullah AM, Chowdhury AR, et al. Electromagnetic-triboelectric-hybrid energy tile for biomechanical green energy
                    harvesting. Nano Energy 2020;77:105250.  DOI
               68.       Wang H, Cheng J, Wang Z, Ji L, Wang Z. Triboelectric nanogenerators for human-health care. Sci Bull 2021;66:490-511.  DOI
               69.       Niu S, Wang ZL. Theoretical systems of triboelectric nanogenerators. Nano Energy 2015;14:161-92.  DOI
   94   95   96   97   98   99   100   101   102   103   104