Page 100 - Read Online
P. 100
Page 26 of 27 Kim et al. Soft Sci 2024;4:24 https://dx.doi.org/10.20517/ss.2024.09
70. Gai Y, Wang E, Liu M, et al. A self-powered wearable sensor for continuous wireless sweat monitoring. Small Methods
2022;6:e2200653. DOI
71. Cheedarala RK, Song JI. Integrated electronic skin (e-skin) for harvesting of TENG energy through push-pull ionic electrets and ion-
ion hopping mechanism. Sci Rep 2022;12:3879. DOI PubMed PMC
72. Liu X, Zhang Y, Wang X, et al. A battery-free wireless body area network towards state perception under all-weather conditions.
Nano Energy 2023;116:108856. DOI
73. Samir A, Ashour FH, Hakim AAA, Bassyouni M. Recent advances in biodegradable polymers for sustainable applications. npj Mater
Degrad 2022;6:68. DOI
74. Hosseini ES, Dervin S, Ganguly P, Dahiya R. Biodegradable materials for sustainable health monitoring devices. ACS Appl Bio
Mater 2021;4:163-94. DOI PubMed PMC
75. Veeralingam S, Sahatiya P, Kadu A, Mattela V, Badhulika S. Direct, one-step growth of NiSe on cellulose paper: a low-cost,
2
flexible, and wearable with smartphone enabled multifunctional sensing platform for customized noninvasive personal healthcare
monitoring. ACS Appl Electron Mater 2019;1:558-68. DOI
76. Wang L, Peng S, Patil A, Jiang J, Zhang Y, Chang C. Enzymatic crosslinked silk fibroin hydrogel for biodegradable electronic skin
and pulse waveform measurements. Biomacromolecules 2022;23:3429-38. DOI
77. Torgbo S, Sukyai P. Biodegradation and thermal stability of bacterial cellulose as biomaterial: The relevance in biomedical
applications. Polym Degrad Stab 2020;179:109232. DOI
78. Li Z, Gu X, Lou S, Zheng Y. The development of binary Mg-Ca alloys for use as biodegradable materials within bone. Biomaterials
2008;29:1329-44. DOI PubMed
79. Erdmann N, Angrisani N, Reifenrath J, et al. Biomechanical testing and degradation analysis of MgCa0.8 alloy screws: a comparative
in vivo study in rabbits. Acta Biomater 2011;7:1421-8. DOI PubMed
80. Kang S, Hwang S, Yu S, et al. Biodegradable thin metal foils and spin-on glass materials for transient electronics. Adv Funct Mater
2015;25:1789-97. DOI
81. Paul SJ, Elizabeth I, Gupta BK. Ultrasensitive wearable strain sensors based on a VACNT/PDMS thin film for a wide range of human
motion monitoring. ACS Appl Mater Interfaces 2021;13:8871-9. DOI PubMed
82. Hwang GT, Park H, Lee JH, et al. Self-powered cardiac pacemaker enabled by flexible single crystalline PMN-PT piezoelectric
energy harvester. Adv Mater 2014;26:4880-7. DOI PubMed
83. Kim N, Chen J, Wang W, et al. Highly-sensitive skin-attachable eye-movement sensor using flexible nonhazardous piezoelectric thin
film. Adv Funct Mater 2021;31:2008242. DOI
84. Yang T, Jiang X, Zhong Y, et al. A wearable and highly sensitive graphene strain sensor for precise home-based pulse wave
monitoring. ACS Sens 2017;2:967-74. DOI
85. Currano LJ, Sage FC, Hagedon M, Hamilton L, Patrone J, Gerasopoulos K. Wearable sensor system for detection of lactate in sweat.
Sci Rep 2018;8:15890. DOI PubMed PMC
86. Xu J, Tao X, Liu X, Yang L. Wearable eye patch biosensor for noninvasive and simultaneous detection of multiple biomarkers in
human tears. Anal Chem 2022;94:8659-67. DOI
87. Bi Y, Sun M, Wang J, et al. Universal fully integrated wearable sensor arrays for the multiple electrolyte and metabolite monitoring
in raw sweat, saliva, or urine. Anal Chem 2023;95:6690-9. DOI PubMed
88. Li S, Wang S, Wu B, et al. Unlocking pomegranate-structured wireless sensors with superhigh sensitivity via room-temperature
water-driven rapid solidification of conductive pathways. Nano Energy 2024;120:109148. DOI
89. Kang BH, Park K, Hambsch M, et al. Skin-conformable photoplethysmogram sensors for energy-efficient always-on cardiovascular
monitoring systems. Nano Energy 2022;92:106773. DOI
90. Wilkerson JE, Horvath SM, Gutin B, Molnar S, Diaz FJ. Plasma electrolyte content and concentration during treadmill exercise in
humans. J Appl Physiol Respir Environ Exerc Physiol 1982;53:1529-39. DOI PubMed
91. Kellum JA. Determinants of blood pH in health and disease. Crit Care 2000;4:6-14. DOI PubMed PMC
92. Egi M, Bellomo R, Stachowski E, et al. Blood glucose concentration and outcome of critical illness: the impact of diabetes. Crit Care
Med 2008;36:2249-55. DOI PubMed
93. Özbek O, Berkel C. Recent advances in potentiometric analysis: paper-based devices. Sensors Int 2022;3:100189. DOI
94. Parrilla M, Cuartero M, Crespo GA. Wearable potentiometric ion sensors. TrAC Trends Anal Chem 2019;110:303-20. DOI
95. Criscuolo F, Ny Hanitra I, Aiassa S, et al. Wearable multifunctional sweat-sensing system for efficient healthcare monitoring. Sensors
Actuators B Chem 2021;328:129017. DOI
96. Sharma A, Ansari MZ, Cho C. Ultrasensitive flexible wearable pressure/strain sensors: Parameters, materials, mechanisms and
applications. Sensors Actuators A Phys 2022;347:113934. DOI
97. Li X, Zhang R, Yu W, et al. Stretchable and highly sensitive graphene-on-polymer strain sensors. Sci Rep 2012;2:870. DOI PubMed
PMC
98. Xiao X, Yuan L, Zhong J, et al. High-strain sensors based on ZnO nanowire/polystyrene hybridized flexible films. Adv Mater
2011;23:5440-4. DOI PubMed
99. Teng F, Zi T, Fang J, Liu C, Wu D, Li A. Extremely sensitive wearable strain sensor with wide range based on a simple parallel
connection architecture. Adv Elect Mater 2023;9:2200993. DOI
100. Kim SR, Kim JH, Park JW. Wearable and transparent capacitive strain sensor with high sensitivity based on patterned ag nanowire

