Page 105 - Read Online
P. 105
Yang et al. Soft Sci 2024;4:9 https://dx.doi.org/10.20517/ss.2023.43 Page 25 of 26
densities. Small 2023;19:2204781. DOI
89. Yang N, Li W, Gong F, et al. Injectable nonmagnetic liquid metal for eddy-thermal ablation of tumors under alternating magnetic
field. Small Methods 2020;4:2000147. DOI
90. Galvao J, Davis B, Tilley M, Normando E, Duchen MR, Cordeiro MF. Unexpected low-dose toxicity of the universal solvent DMSO.
FASEB J 2014;28:1317-30. DOI
91. Wang X, Li X, Duan M, et al. Endosomal escapable cryo-treatment-driven membrane-encapsulated Ga liquid-metal transformer to
facilitate intracellular therapy. Matter 2022;5:219-36. DOI
92. Zhang X, Tian J, Zhao L, et al. CT-guided conformal cryoablation for peripheral NSCLC: initial experience. Eur J Radiol
2012;81:3354-62. DOI
93. Wang Q, Yu Y, Pan K, Liu J. Liquid metal angiography for mega contrast X-ray visualization of vascular network in reconstructing
in-vitro organ anatomy. IEEE Trans Biomed Eng 2014;61:2161-6. DOI
94. Fan L, Duan M, Xie Z, et al. Injectable and radiopaque liquid metal/calcium alginate hydrogels for endovascular embolization and
tumor embolotherapy. Small 2020;16:1903421. DOI
95. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 2012;12:252-64. DOI
96. Mellman I, Steinman RM. Dendritic cells: specialized and regulated antigen processing machines. Cell 2001;106:255-8. DOI
97. Zhang Y, Liu MD, Li CX, Li B, Zhang XZ. Tumor cell membrane-coated liquid metal nanovaccine for tumor prevention. Chin J
Chem 2020;38:595-600. DOI
98. Yakkala C, Chiang CLL, Kandalaft L, Denys A, Duran R. Cryoablation and immunotherapy: an enthralling synergy to confront the
tumors. Front Immunol 2019;10:2283. DOI
99. Bernstein LR. Mechanisms of therapeutic activity for gallium. Pharmacol Rev 1998;50:665-82. Available from: https://pharmrev.
aspetjournals.org/content/50/4/665. [Last accessed on 30 Nov 2023].
67
100. Clausen J, Edeling CJ, Fogh J. Ga binding to human-serum proteins and tumor components. Cancer Res 1974;34:1931-7. Available
from: https://aacrjournals.org/cancerres/article/34/8/1931/480195. [Last accessed on 30 Nov 2023].
101. Harris WR. Thermodynamics of gallium complexation by human lactoferrin. Biochemistry 1986;25:803-8. DOI
102. Weiner RE. Role of phosphate-containing compounds in the transfer of indium-111 and gallium-67 from transferrin to ferritin. J Nucl
Med 1989;30:70-9. Available from: https://jnm.snmjournals.org/content/30/1/70. [Last accessed on 30 Nov 2023].
103. Chitambar CR. Gallium and its competing roles with iron in biological systems. Biochim Biophys Acta 2016;1863:2044-53. DOI
104. Chitambar CR, Seligman PA. Effects of different transferrin forms on transferrin receptor expression, iron uptake, and cellular
proliferation of human leukemic HL60 cells. Mechanisms responsible for the specific cytotoxicity of transferrin-gallium. J Clin Invest
1986;78:1538-46. DOI
105. Hedley DW, Tripp EH, Slowiaczek P, Mann GJ. Effect of gallium on DNA-synthesis by human T-cell lymphoblasts. Cancer Res
1988;48:3014-8. Available from: https://aacrjournals.org/cancerres/article/48/11/3014/492615. [Last accessed on 30 Nov 2023].
106. Chitambar CR, Al-Gizawiy MM, Alhajala HS, et al. Gallium maltolate disrupts tumor iron metabolism and retards the growth of
glioblastoma by inhibiting mitochondrial function and ribonucleotide reductase. Mol Cancer Ther 2018;17:1240-50. DOI
107. Chitambar CR, Purpi DP, Woodliff J, Yang M, Wereley JP. Development of gallium compounds for treatment of lymphoma: gallium
maltolate, a novel hydroxypyrone gallium compound, induces apoptosis and circumvents lymphoma cell resistance to gallium nitrate.
J Pharmacol Exp Ther 2007;322:1228-36. DOI
108. Feng H, Xu Y, Luo S, Dang H, Liu K, Sun WQ. Evaluation and preservation of vascular architectures in decellularized whole rat
kidneys. Cryobiology 2020;95:72-9. DOI
109. Maathuis MHJ, Leuvenink HGD, Ploeg RJ. Perspectives in organ preservation. Transplantation 2007;83:1289-98. DOI
110. Ma Y, Gao L, Tian Y, Chen P, Yang J, Zhang L. Advanced biomaterials in cell preservation: hypothermic preservation and
cryopreservation. Acta Biomater 2021;131:97-116. DOI
111. Niu X, Arthur PG, Jeffrey GP. Iron and oxidative stress in cold-initiated necrotic death of rat hepatocyte. Transplant Proc
2010;42:1563-8. DOI
112. Zhang TJ, Hang J, Wen DX, Hang YN, Sieber FE. Hippocampus bcl-2 and bax expression and neuronal apoptosis after moderate
hypothermic cardiopulmonary bypass in rats. Anesth Analg 2006;102:1018-25. DOI
113. Zhai Y, Petrowsky H, Hong JC, Busuttil RW, Kupiec-Weglinski JW. Ischaemia-reperfusion injury in liver transplantation - from
bench to bedside. Nat Rev Gastroenterol Hepatol 2013;10:79-89. DOI
114. Makkonen N, Hirvonen MR, Savolainen K, Lapinjoki S, Mönkkönen J. The effect of free gallium and gallium in liposomes on
cytokine and nitric oxide secretion from macrophage-like cells in vitro. Inflamm Res 1995;44:523-8. DOI
115. de Albuquerque Wanderley Sales V, Timóteo TRR, da Silva NM, et al. A systematic review of the anti-inflammatory effects of
gallium compounds. Curr Med Chem 2021;28:2062-76. DOI
116. Chitambar CR, Seigneuret MC, Matthaeus WG, Lum LG. Modulation of lymphocyte proliferation and immunoglobulin production
by transferrin-gallium. Cancer Res 1989;49:1125-29. Available from: https://aacrjournals.org/cancerres/article/49/5/1125/494569.
[Last accessed on 30 Nov 2023].
117. Chang KL, Liao WT, Yu CL, Lan CCE, Chang LW, Yu HS. Effects of gallium on immune stimulation and apoptosis induction in
human peripheral blood mononuclear cells. Toxicol Appl Pharmacol 2003;193:209-17. DOI
118. Crichton RR, Wilmet S, Legssyer R, Ward RJ. Molecular and cellular mechanisms of iron homeostasis and toxicity in mammalian
cells. J Inorg Biochem 2002;91:9-18. DOI

