Page 102 - Read Online
P. 102

Page 22 of 26                           Yang et al. Soft Sci 2024;4:9   https://dx.doi.org/10.20517/ss.2023.43

               Ethical approval and consent to participate
               Not applicable.


               Consent for publication
               Not applicable.


               Copyright
               © The Author(s) 2024.


               REFERENCES
               1.       Yan JF, Liu J. Nanocryosurgery and its mechanisms for enhancing freezing efficiency of tumor tissues. Nanomedicine 2008;4:79-87.
                    DOI
               2.       Hou Y, Sun Z, Rao W, Liu J. Nanoparticle-mediated cryosurgery for tumor therapy. Nanomedicine 2018;14:493-506.  DOI
               3.       Yuan F, Zhao G, Panhwar F. Enhanced killing of HepG2 during cryosurgery with Fe O -nanoparticle improved intracellular ice
                                                                             3  4
                    formation and cell dehydration. Oncotarget 2017;8:92561-77.  DOI
               4.       Khademi R, Mohebbi-kalhori D, Razminia A. Thermal analysis of a tumorous vascular tissue during pulsed-cryosurgery and nano-
                    hyperthermia therapy: finite element approach. Int J Heat Mass Tran 2019;137:1001-13.  DOI
               5.       Liu Y, Bhattarai P, Dai Z, Chen X. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chem
                    Soc Rev 2019;48:2053-108.  DOI
               6.       Pham L, Dahiya R, Rubinsky B. An in vivo study of antifreeze protein adjuvant cryosurgery. Cryobiology 1999;38:169-75.  DOI
               7.       Muldrew K, Rewcastle J, Donnelly BJ, et al. Flounder antifreeze peptides increase the efficacy of cryosurgery. Cryobiology
                    2001;42:182-9.  DOI
               8.       Jiang J, Goel R, Schmechel S, Vercellotti G, Forster C, Bischof J. Pre-conditioning cryosurgery: cellular and molecular mechanisms
                    and dynamics of TNF-α enhanced cryotherapy in an in vivo prostate cancer model system. Cryobiology 2010;61:280-8.  DOI
               9.       Wang CL, Teo KY, Han B. An amino acidic adjuvant to augment cryoinjury of MCF-7 breast cancer cells. Cryobiology 2008;57:52-
                    9.  DOI
               10.       Di DR, He ZZ, Sun ZQ, Liu J. A new nano-cryosurgical modality for tumor treatment using biodegradable MgO nanoparticles.
                    Nanomedicine 2012;8:1233-41.  DOI
               11.       Krishnamoorthy K, Moon JY, Hyun HB, Cho SK, Kim SJ. Mechanistic investigation on the toxicity of MgO nanoparticles toward
                    cancer cells. J Mater Chem 2012;22:24610-7.  DOI
               12.       Ye P, Kong Y, Chen X, et al. Fe O  nanoparticles and cryoablation enhance ice crystal formation to improve the efficiency of killing
                                         3
                                           4
                    breast cancer cells. Oncotarget 2017;8:11389-99.  DOI
               13.       Yu TH, Liu J, Zhou YX. Selective freezing of target biological tissues after injection of solutions with specific thermal properties.
                    Cryobiology 2005;50:174-82.  DOI
               14.       Choi B, Choi H, Yu B, Kim DH. Synergistic local combination of radiation and anti-programmed death ligand 1 immunotherapy
                    using radiation-responsive splintery metallic nanocarriers. ACS Nano 2020;14:13115-26.  DOI
               15.       Nel AE, Mädler L, Velegol D, et al. Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 2009;8:543-
                    57.  DOI
               16.       Giwa S, Lewis JK, Alvarez L, et al. The promise of organ and tissue preservation to transform medicine. Nat Biotechnol
                    2017;35:530-42.  DOI
               17.       Pal R, Mamidi MK, Das AK, Bhonde R. Diverse effects of dimethyl sulfoxide (DMSO) on the differentiation potential of human
                    embryonic stem cells. Arch Toxicol 2012;86:651-61.  DOI
               18.       Fahy GM, Wowk B, Wu J, et al. Cryopreservation of organs by vitrification: perspectives and recent advances. Cryobiology
                    2004;48:157-78.  DOI
               19.       Finger EB, Bischof JC. Cryopreservation by vitrification: a promising approach for transplant organ banking. Curr Opin Organ Tran
                    2018;23:353-60.  DOI
               20.       Morris GJ, Goodrich M, Acton E, Fonseca F. The high viscosity encountered during freezing in glycerol solutions: effects on
                    cryopreservation. Cryobiology 2006;52:323-34.  DOI
               21.       Luyet B. On the possible biological significance of some physical changes encountered in the cooling and the rewarming of aqueous
                    solutions. In: Cellular Injury and Resistance in Freezing Organisms: proceedings. 1967;2:1-20. Available from: http://hdl.handle.net/
                    2115/20405. [Last accessed on 30 Nov 2023].
               22.       Debenedetti PG, Stillinger FH. Supercooled liquids and the glass transition. Nature 2001;410:259-67.  DOI
               23.       Han Z, Sharma A, Gao Z, et al. Diffusion limited cryopreservation of tissue with radiofrequency heated metal forms. Adv Healthc
                    Mater 2020;9:2000796.  DOI
               24.       Manuchehrabadi N, Gao Z, Zhang JJ, et al. Improved tissue cryopreservation using inductive heating of magnetic nanoparticles. Sci
                    Transl Med 2017;9:eaah4586.  DOI
               25.       Khosla K, Wang Y, Hagedorn M, Qin Z, Bischof J. Gold nanorod induced warming of embryos from the cryogenic state enhances
   97   98   99   100   101   102   103   104   105   106   107