Page 102 - Read Online
P. 102
Page 22 of 26 Yang et al. Soft Sci 2024;4:9 https://dx.doi.org/10.20517/ss.2023.43
Ethical approval and consent to participate
Not applicable.
Consent for publication
Not applicable.
Copyright
© The Author(s) 2024.
REFERENCES
1. Yan JF, Liu J. Nanocryosurgery and its mechanisms for enhancing freezing efficiency of tumor tissues. Nanomedicine 2008;4:79-87.
DOI
2. Hou Y, Sun Z, Rao W, Liu J. Nanoparticle-mediated cryosurgery for tumor therapy. Nanomedicine 2018;14:493-506. DOI
3. Yuan F, Zhao G, Panhwar F. Enhanced killing of HepG2 during cryosurgery with Fe O -nanoparticle improved intracellular ice
3 4
formation and cell dehydration. Oncotarget 2017;8:92561-77. DOI
4. Khademi R, Mohebbi-kalhori D, Razminia A. Thermal analysis of a tumorous vascular tissue during pulsed-cryosurgery and nano-
hyperthermia therapy: finite element approach. Int J Heat Mass Tran 2019;137:1001-13. DOI
5. Liu Y, Bhattarai P, Dai Z, Chen X. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chem
Soc Rev 2019;48:2053-108. DOI
6. Pham L, Dahiya R, Rubinsky B. An in vivo study of antifreeze protein adjuvant cryosurgery. Cryobiology 1999;38:169-75. DOI
7. Muldrew K, Rewcastle J, Donnelly BJ, et al. Flounder antifreeze peptides increase the efficacy of cryosurgery. Cryobiology
2001;42:182-9. DOI
8. Jiang J, Goel R, Schmechel S, Vercellotti G, Forster C, Bischof J. Pre-conditioning cryosurgery: cellular and molecular mechanisms
and dynamics of TNF-α enhanced cryotherapy in an in vivo prostate cancer model system. Cryobiology 2010;61:280-8. DOI
9. Wang CL, Teo KY, Han B. An amino acidic adjuvant to augment cryoinjury of MCF-7 breast cancer cells. Cryobiology 2008;57:52-
9. DOI
10. Di DR, He ZZ, Sun ZQ, Liu J. A new nano-cryosurgical modality for tumor treatment using biodegradable MgO nanoparticles.
Nanomedicine 2012;8:1233-41. DOI
11. Krishnamoorthy K, Moon JY, Hyun HB, Cho SK, Kim SJ. Mechanistic investigation on the toxicity of MgO nanoparticles toward
cancer cells. J Mater Chem 2012;22:24610-7. DOI
12. Ye P, Kong Y, Chen X, et al. Fe O nanoparticles and cryoablation enhance ice crystal formation to improve the efficiency of killing
3
4
breast cancer cells. Oncotarget 2017;8:11389-99. DOI
13. Yu TH, Liu J, Zhou YX. Selective freezing of target biological tissues after injection of solutions with specific thermal properties.
Cryobiology 2005;50:174-82. DOI
14. Choi B, Choi H, Yu B, Kim DH. Synergistic local combination of radiation and anti-programmed death ligand 1 immunotherapy
using radiation-responsive splintery metallic nanocarriers. ACS Nano 2020;14:13115-26. DOI
15. Nel AE, Mädler L, Velegol D, et al. Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 2009;8:543-
57. DOI
16. Giwa S, Lewis JK, Alvarez L, et al. The promise of organ and tissue preservation to transform medicine. Nat Biotechnol
2017;35:530-42. DOI
17. Pal R, Mamidi MK, Das AK, Bhonde R. Diverse effects of dimethyl sulfoxide (DMSO) on the differentiation potential of human
embryonic stem cells. Arch Toxicol 2012;86:651-61. DOI
18. Fahy GM, Wowk B, Wu J, et al. Cryopreservation of organs by vitrification: perspectives and recent advances. Cryobiology
2004;48:157-78. DOI
19. Finger EB, Bischof JC. Cryopreservation by vitrification: a promising approach for transplant organ banking. Curr Opin Organ Tran
2018;23:353-60. DOI
20. Morris GJ, Goodrich M, Acton E, Fonseca F. The high viscosity encountered during freezing in glycerol solutions: effects on
cryopreservation. Cryobiology 2006;52:323-34. DOI
21. Luyet B. On the possible biological significance of some physical changes encountered in the cooling and the rewarming of aqueous
solutions. In: Cellular Injury and Resistance in Freezing Organisms: proceedings. 1967;2:1-20. Available from: http://hdl.handle.net/
2115/20405. [Last accessed on 30 Nov 2023].
22. Debenedetti PG, Stillinger FH. Supercooled liquids and the glass transition. Nature 2001;410:259-67. DOI
23. Han Z, Sharma A, Gao Z, et al. Diffusion limited cryopreservation of tissue with radiofrequency heated metal forms. Adv Healthc
Mater 2020;9:2000796. DOI
24. Manuchehrabadi N, Gao Z, Zhang JJ, et al. Improved tissue cryopreservation using inductive heating of magnetic nanoparticles. Sci
Transl Med 2017;9:eaah4586. DOI
25. Khosla K, Wang Y, Hagedorn M, Qin Z, Bischof J. Gold nanorod induced warming of embryos from the cryogenic state enhances

