Page 103 - Read Online
P. 103

Yang et al. Soft Sci 2024;4:9   https://dx.doi.org/10.20517/ss.2023.43          Page 23 of 26

                    viability. ACS Nano 2017;11:7869-78.  DOI
               26.       Manuchehrabadi N, Shi M, Roy P, et al. Ultrarapid inductive rewarming of vitrified biomaterials with thin metal forms. Ann Biomed
                    Eng 2018;46:1857-69.  DOI
               27.       Clarkson TW, Magos L. The toxicology of mercury and its chemical compounds. Crit Rev Toxicol 2006;36:609-62.  DOI
               28.       Rao W, Liu J. Tumor thermal ablation therapy using alkali metals as powerful self-heating seeds. Minim Invasive Ther Allied Technol
                    2008;17:43-9.  DOI
               29.       Rao W, Liu J. Injectable liquid alkali alloy based-tumor thermal ablation therapy. Minim Invasive Ther Allied Technol 2009;18:30-5.
                    DOI
               30.       Daeneke T, Khoshmanesh K, Mahmood N, et al. Liquid metals: fundamentals and applications in chemistry. Chem Soc Rev
                    2018;47:4073-111.  DOI
               31.       Jia X, Liu B, Li S, et al. High-performance non-silicone thermal interface materials based on tunable size and polymorphic liquid
                    metal inclusions. J Mater Sci 2022;57:11026-45.  DOI
               32.       Li J, Ma Q, Gao S, et al. Liquid bridge: liquid metal bridging spherical BN largely enhances the thermal conductivity and mechanical
                    properties of thermal interface materials. J Mater Chem C 2022;10:6736-43.  DOI
               33.       Zhang XD, Zhang ZT, Wang HZ, Cao BY. Thermal interface materials with high thermal conductivity and low young’s modulus
                    using a solid-liquid metal codoping strategy. ACS Appl Mater Interfaces 2023;15:3534-42.  DOI
               34.      Wang D, Ye J, Bai Y, et al. Liquid metal combinatorics toward materials discovery. Adv Mater 2023;35:2303533.  DOI
               35.       Tang J, Lambie S, Meftahi N, et al. Unique surface patterns emerging during solidification of liquid metal alloys. Nat Nanotechnol
                    2021;16:431-9.  DOI
               36.       Idrus-Saidi SA, Tang J, Lambie S, et al. Liquid metal synthesis solvents for metallic crystals. Science 2022;378:1118-24.  DOI
               37.       Kang M, Saucer TW, Warren MV, et al. Surface plasmon resonances of Ga nanoparticle arrays. Appl Phys Lett 2012;101:081905.
                    DOI
               38.       Qi Y, Jin T, Yuan K, You J, Shen C, Xie K. Chemically stable polypyrrole-modified liquid metal nanoparticles with the promising
                    photothermal conversion capability. J Mater Sci Technol 2022;127:144-52.  DOI
               39.       Hu JJ, Liu MD, Gao F, et al. Photo-controlled liquid metal nanoparticle-enzyme for starvation/photothermal therapy of tumor by win-
                    win cooperation. Biomaterials 2019;217:119303.  DOI
               40.       Sun X, Sun M, Liu M, et al. Shape tunable gallium nanorods mediated tumor enhanced ablation through near-infrared photothermal
                    therapy. Nanoscale 2019;11:2655-67.  DOI
               41.       Liu T, Song Y, Huang Z, et al. Photothermal photodynamic therapy and enhanced radiotherapy of targeting copolymer-coated liquid
                    metal nanoparticles on liver cancer. Colloid Surface B 2021;207:112023.  DOI
               42.       Ding XL, Liu MD, Cheng Q, et al. Multifunctional liquid metal-based nanoparticles with glycolysis and mitochondrial metabolism
                    inhibition for tumor photothermal therapy. Biomaterials 2022;281:121369.  DOI
               43.       Wang D, Rao W. Alginate sponge assisted instantize liquid metal nanocomposite for photothermo-chemotherapy. Appl Mater Today
                    2022;29:101583.  DOI
               44.       Chen S, Wang HZ, Zhao RQ, Rao W, Liu J. Liquid metal composites. Matter 2020;2:1446-80.  DOI
               45.       Delmas T, Piraux H, Couffin AC, et al. How to prepare and stabilize very small nanoemulsions. Langmuir 2011;27:1683-92.  DOI
               46.       Yamaguchi A, Mashima Y, Iyoda T. Reversible size control of liquid-metal nanoparticles under ultrasonication. Angew Chem Int Ed
                    Engl 2015;54:12809-13.  DOI
               47.       Chechetka SA, Yu Y, Zhen X, Pramanik M, Pu K, Miyako E. Light-driven liquid metal nanotransformers for biomedical theranostics.
                    Nat Commun 2017;8:15432.  DOI
               48.       Gan T, Shang W, Handschuh-Wang S, Zhou X. Light-induced shape morphing of liquid metal nanodroplets enabled by
                    polydopamine coating. Small 2019;15:1804838.  DOI
               49.       Chang H, Guo R, Sun Z, et al. Direct writing and repairable paper flexible electronics using nickel-liquid metal ink. Adv Mater
                    Interfaces 2018;5:1800571.  DOI
               50.       Tang J, Zhao X, Li J, Zhou Y, Liu J. Liquid metal phagocytosis: intermetallic wetting induced particle internalization. Adv Sci
                    2017;4:1700024.  DOI
                                                                                                      2
               51.       Tang J, Zhao X, Li J, Guo R, Zhou Y, Liu J. Gallium-based liquid metal amalgams: transitional-state metallic mixtures (TransM ixes)
                    with enhanced and tunable electrical, thermal, and mechanical properties. ACS Appl Mater Interfaces 2017;9:35977-87.  DOI
               52.       Zhao R, Guo R, Xu X, Liu J. A fast and cost-effective transfer printing of liquid metal inks for three-dimensional wiring in flexible
                    electronics. ACS Appl Mater Interfaces 2020;12:36723-30.  DOI
               53.       Hou Y, Zhang P, Wang D, Liu J, Rao W. Liquid metal hybrid platform-mediated ice-fire dual noninvasive conformable melanoma
                    therapy. ACS Appl Mater Interfaces 2020;12:27984-93.  DOI
               54.       Park YG, Min H, Kim H, Zhexembekova A, Lee CY, Park JU. Three-dimensional, high-resolution printing of carbon nanotube/liquid
                    metal composites with mechanical and electrical reinforcement. Nano Lett 2019;19:4866-72.  DOI
               55.       Chang H, Zhang P, Guo R, et al. Recoverable liquid metal paste with reversible rheological characteristic for electronics printing.
                    ACS Appl Mater Interfaces 2020;12:14125-35.  DOI
               56.       Wang X, Yao W, Guo R, et al. Soft and moldable mg-doped liquid metal for conformable skin tumor photothermal therapy. Adv
                    Healthc Mater 2018;7:1800318.  DOI
               57.       Wang D, Wu Q, Guo R, Lu C, Niu M, Rao W. Magnetic liquid metal loaded nano-in-micro spheres as fully flexible theranostic
   98   99   100   101   102   103   104   105   106   107   108