Page 86 - Read Online
P. 86
Lin et al. Soft Sci 2023;3:14 https://dx.doi.org/10.20517/ss.2023.05 Page 23 of 25
96. Rijks TG, Coehoorn R, de Jong MJ, de Jonge WJ. Semiclassical calculations of the anisotropic magnetoresistance of NiFe-based thin
films, wires, and multilayers. Phys Rev B Condens Matter 1995;51:283-91. DOI PubMed
97. Popovic RS, Drljaca PM, Schott C In Bridging the gap between AMR, GMR, and Hall magnetic sensors, 2002 23rd International
Conference on Microelectronics. Proceedings (Cat. No.02TH8595), 12-15 May 2002; 2002; pp 55-58 vol.1. DOI
98. Michelena MD, Oelschlägel W, Arruego I, del Real RP, Mateos JAD, Merayo JM. Magnetic giant magnetoresistance commercial off
the shelf for space applications. J Appl Phys 2008;103:07E912. DOI
99. Grissom CB. Magnetic Field Effects in Biology: A Survey of Possible Mechanisms with Emphasis on Radical-Pair Recombination.
Chem Rev 1995;95:3-24. DOI
100. Djayaprawira DD, Tsunekawa K, Nagai M, et al. 230% room-temperature magnetoresistance in CoFeB⁄MgO⁄CoFeB magnetic tunnel
junctions. Appl Phys Lett 2005;86:092502. DOI
101. Ikeda S, Hayakawa J, Ashizawa Y, et al. Tunnel magnetoresistance of 604% at 300K by suppression of Ta diffusion in
CoFeB⁄MgO⁄CoFeB pseudo-spin-valves annealed at high temperature. Appl Phys Lett 2008;93:082508. DOI
102. Carlson A, Bowen AM, Huang Y, Nuzzo RG, Rogers JA. Transfer printing techniques for materials assembly and micro/nanodevice
fabrication. Adv Mater 2012;24:5284-318. DOI PubMed
103. Chung H, Kim T, Kim H, et al. Fabrication of releasable single-crystal silicon-metal oxide field-effect devices and their deterministic
assembly on foreign substrates. Adv Funct Mater 2011;21:3029-36. DOI
104. Loong LM, Lee W, Qiu X, et al. Flexible mgo barrier magnetic tunnel junctions. Adv Mater 2016;28:4983-90. DOI
105. Ota S, Ono M, Matsumoto H, et al. CoFeB/MgO-based magnetic tunnel junction directly formed on a flexible substrate. Appl Phys
Express 2019;12:053001. DOI
106. Ota S, Ando A, Sekitani T, Koyama T, Chiba D. Flexible CoFeB/MgO-based magnetic tunnel junctions annealed at high temperature
(≥ 350 °C). Appl Phys Lett 2019;115:202401. DOI
107. Saito K, Imai A, Ota S, Koyama T, Ando A, Chiba D. CoFeB/MgO-based magnetic tunnel junctions for film-type strain gauge. Appl
Phys Lett 2022;120:072407. DOI
108. Ribeiro P, Cardoso S, Bernardino A, Jamone L. Highly sensitive bio-inspired sensor for fine surface exploration and characterization.
Ieee Int Conf Robot :2020. 625-631. DOI
109. Ye C, Wang Y, Tao Y. High-density large-scale tmr sensor array for magnetic field imaging. IEEE Trans Instrum Meas
2019;68:2594-601. DOI
110. Amaral J, Pinto V, Costa T, et al. Integration of TMR sensors in silicon microneedles for magnetic measurements of neurons. IEEE
Trans Magn 2013;49:3512-5. DOI
111. Wang SX, Bae S, Li G, et al. Towards a magnetic microarray for sensitive diagnostics. J Magn Magn Mater 2005;293:731-6. DOI
112. Li D, Yao K, Gao Z, Liu Y, Yu X. Recent progress of skin-integrated electronics for intelligent sensing. Light: Advanced
Manufacturing 2021;2:4. DOI
113. Chen JY, Lau YC, Coey JM, Li M, Wang JP. High performance MgO-barrier magnetic tunnel junctions for flexible and wearable
spintronic applications. Sci Rep 2017;7:42001. DOI PubMed PMC
114. Chow TS. The effect of particle shape on the mechanical properties of filled polymers. J Mater Sci 1980;15:1873-88. DOI
115. Varga Z, Filipcsei G, Zrínyi M. Magnetic field sensitive functional elastomers with tuneable elastic modulus. Polymer 2006;47:227-
33. DOI
116. Diguet G, Sebald G, Nakano M, Lallart M, Cavaillé J. Magnetic particle chains embedded in elastic polymer matrix under pure
transverse shear and energy conversion. J Magn Magn Mater 2019;481:39-49. DOI
117. Diguet G, Sebald G, Nakano M, Lallart M, Cavaillé J. Optimization of magneto-rheological elastomers for energy harvesting
applications. Smart Mater Struct 2020;29:075017. DOI
118. Zhou Y, Zhao X, Xu J, et al. Giant magnetoelastic effect in soft systems for bioelectronics. Nat Mater 2021;20:1670-6. DOI
119. Zhao X, Chen G, Zhou Y, et al. Giant magnetoelastic effect enabled stretchable sensor for self-powered biomonitoring. ACS Nano
2022;16:6013-22. DOI
120. Li Y, Qi Z, Yang J, et al. Origami NdFeB flexible magnetic membranes with enhanced magnetism and programmable sequences of
polarities. Adv Funct Mater 2019;29:1904977. DOI
121. Zhao Y, Gao S, Zhang X, et al. Fully flexible electromagnetic vibration sensors with annular field confinement origami magnetic
membranes. Adv Funct Mater 2020;30:2001553. DOI
122. Yan Y, Hu Z, Yang Z, et al. Soft magnetic skin for super-resolution tactile sensing with force self-decoupling. Sci Robot
2021;6:eabc8801. DOI
123. Hellebrekers T, Kroemer O, Majidi C. Soft Magnetic skin for continuous deformation sensing. Adv Intell Syst 2019;1:1900025. DOI
124. Wang H, de Boer G, Kow J, et al. Design methodology for magnetic field-based soft tri-axis tactile sensors. Sensors (Basel)
2016;16:1356. DOI PubMed PMC
125. Tomo TP, Regoli M, Schmitz A, et al. A new silicone structure for uskin—a soft, distributed, digital 3-axis skin sensor and its
integration on the humanoid robot icub. IEEE Robot Autom Lett 2018;3:2584-91. DOI
126. Theilade UA, Hansen HN. Surface microstructure replication in injection molding. Int J Adv Manuf Technol 2007;33:157-66. DOI
127. Isaacoff BP, Brown KA. Progress in top-down control of bottom-up assembly. Nano Lett 2017;17:6508-10. DOI PubMed
128. Alfadhel A, Kosel J. Magnetic nanocomposite cilia tactile sensor. Adv Mater 2015;27:7888-92. DOI PubMed
129. Zhang X, Zheng C, Li Y, Wu Z, Huang X. Magnetically levitated flexible vibration sensors with surficial micropyramid arrays for

