Page 85 - Read Online
P. 85
Page 22 of 25 Lin et al. Soft Sci 2023;3:14 https://dx.doi.org/10.20517/ss.2023.05
63. Fagaly RL. Superconducting quantum interference device instruments and applications. Rev Sci Instrum 2006;77:101101. DOI
64. Vasyukov D, Anahory Y, Embon L, et al. A scanning superconducting quantum interference device with single electron spin
sensitivity. Nat Nanotechnol 2013;8:639-44. DOI
65. Alexandrov EB. Recent progress in optically pumped magnetometers. Physica Scripta 2003;T105:27. DOI
66. Tierney TM, Holmes N, Mellor S, et al. Optically pumped magnetometers: From quantum origins to multi-channel
magnetoencephalography. Neuroimage 2019;199:598-608. DOI PubMed PMC
67. Binasch G, Grünberg P, Saurenbach F, Zinn W. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic
interlayer exchange. Phys Rev B Condens Matter 1989;39:4828-30. DOI PubMed
68. Baibich MN, Broto JM, Fert A, et al. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys Rev Lett
1988;61:2472-5. DOI
69. Thompson SM. The discovery, development and future of GMR: The Nobel Prize 2007. J Phys D: Appl Phys 2008;41:093001. DOI
70. Berkowitz AE, Mitchell JR, Carey MJ, et al. Giant magnetoresistance in heterogeneous Cu-Co alloys. Phys Rev Lett 1992;68:3745-8.
DOI
71. Tsymbal E, Pettifor D. Perspectives of giant magnetoresistance. Solid State Phys :2001. pp. 113-237. DOI
72. Naoe M, Miyamoto Y, Nakagawa S. Preparation of Ni–Fe/Cu multilayers with low coercivity and GMR effect by ion beam
sputtering. J Appl Phys 1994;75:6525-7. DOI
73. Wang L, Hu Z, Zhu Y, et al. Electric field-tunable giant magnetoresistance (GMR) sensor with enhanced linear range. ACS Appl
Mater Interfaces 2020;12:8855-61. DOI
74. Parkin SSP, K. P. Roche KPR, Takao Suzuki TS. Giant magnetoresistance in antiferromagnetic Co/Cu multilayers grown on Kapton.
Jpn J Appl Phys 1992;31:L1246. DOI
75. Melzer M, Lin G, Makarov D, Schmidt OG. Stretchable spin valves on elastomer membranes by predetermined periodic fracture and
random wrinkling. Adv Mater 2012;24:6468-72. DOI PubMed
76. Makarov D, Melzer M, Karnaushenko D, Schmidt OG. Shapeable magnetoelectronics. Appl Phys Rev 2016;3:011101. DOI
77. Melzer M, Kaltenbrunner M, Makarov D, et al. Imperceptible magnetoelectronics. Nat Commun 2015;6:6080. DOI PubMed PMC
78. Hua Q, Sun J, Liu H, et al. Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing. Nat
Commun 2018;9:244. DOI PubMed PMC
79. Karnaushenko D, Makarov D, Yan C, Streubel R, Schmidt OG. Printable giant magnetoresistive devices. Adv Mater 2012;24:4518-
22. DOI PubMed
80. Ha M, Cañón Bermúdez GS, Kosub T, et al. Printable and stretchable giant magnetoresistive sensors for highly compliant and skin-
conformal electronics. Adv Mater 2021;33:e2005521. DOI PubMed
81. Kondo M, Melzer M, Karnaushenko D, et al. Imperceptible magnetic sensor matrix system integrated with organic driver and
amplifier circuits. Sci Adv 2020;6:eaay6094. DOI PubMed PMC
82. . Cañón Bermúdez GS, Makarov D. Geometrically curved magnetic field sensors for interactive electronics. In: Makarov D, Sheka
DD, editors. Curvilinear micromagnetism. Cham: Springer International Publishing; 2022. pp. 375-401. DOI
83. Becker C, Karnaushenko D, Kang T, et al. Self-assembly of highly sensitive 3D magnetic field vector angular encoders. Sci Adv
2019;5:eaay7459. DOI PubMed PMC
84. Melzer M, Karnaushenko D, Lin G, Baunack S, Makarov D, Schmidt OG. Direct transfer of magnetic sensor devices to elastomeric
supports for stretchable electronics. Adv Mater 2015;27:1333-8. DOI PubMed PMC
85. Swastika P, Antarnusa G, Suharyadi E, Kato T, Iwata S. Biomolecule detection using wheatstone bridge giant magnetoresistance
(GMR) sensors based on CoFeB spin-valve thin film. J Phys : Conf Ser 2018;1011:012060. DOI
86. Cañón Bermúdez GS, Karnaushenko DD, Karnaushenko D, et al. Magnetosensitive e-skins with directional perception for augmented
reality. Sci Adv 2018;4:eaao2623. DOI PubMed PMC
87. Becker C, Bao B, Karnaushenko DD, et al. A new dimension for magnetosensitive e-skins: active matrix integrated micro-origami
sensor arrays. Nat Commun 2022;13:2121. DOI PubMed PMC
88. Maury P, Monteil B, Marty L, Duparc A, Mondoly P, Rollin A. Three-dimensional mapping in the electrophysiological laboratory.
Arch Cardiovasc Dis 2018;111:456-64. DOI PubMed
89. Rivkin B, Becker C, Singh B, et al. Electronically integrated microcatheters based on self-assembling polymer films. Sci Adv
2021;7:eabl5408. DOI PubMed PMC
90. Wang Z, Wang X, Li M, et al. Highly Sensitive flexible magnetic sensor based on anisotropic magnetoresistance effect. Adv Mater
2016;28:9370-7. DOI
91. Oliveros Mata ES, Cañón Bermúdez GS, Ha M, et al. Printable anisotropic magnetoresistance sensors for highly compliant
electronics. Appl Phys A 2021:127. DOI
92. Guo Y, Deng Y, Wang SX. Multilayer anisotropic magnetoresistive angle sensor. Sens Actuator A Phys 2017;263:159-65. DOI
93. Rittinger J, Taptimthong P, Jogschies L, Wurz MC, Rissing L. Impact of different polyimide-based substrates on the soft magnetic
properties of NiFe thin films. Proc Spie 2015:9517. DOI
94. Quynh LK, Tu BD, Anh CV, et al. Design optimization of an anisotropic magnetoresistance sensor for detection of magnetic
nanoparticles. Journal of Elec Materi 2019;48:997-1004. DOI
95. Chiolerio A, Allia P, Celasco E, Martino P, Spizzo F, Celegato F. Magnetoresistance anisotropy in a hexagonal lattice of Co antidots
obtained by thermal evaporation. J Mag Magn Mater 2010;322:1409-12. DOI

