Page 85 - Read Online
P. 85

Page 22 of 25                             Lin et al. Soft Sci 2023;3:14  https://dx.doi.org/10.20517/ss.2023.05

               63.       Fagaly RL. Superconducting quantum interference device instruments and applications. Rev Sci Instrum 2006;77:101101.  DOI
               64.       Vasyukov D, Anahory Y, Embon L, et al. A scanning superconducting quantum interference device with single electron spin
                    sensitivity. Nat Nanotechnol 2013;8:639-44.  DOI
               65.       Alexandrov EB. Recent progress in optically pumped magnetometers. Physica Scripta 2003;T105:27.  DOI
               66.       Tierney  TM,  Holmes  N,  Mellor  S,  et  al.  Optically  pumped  magnetometers:  From  quantum  origins  to  multi-channel
                    magnetoencephalography. Neuroimage 2019;199:598-608.  DOI  PubMed  PMC
               67.       Binasch G, Grünberg P, Saurenbach F, Zinn W. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic
                    interlayer exchange. Phys Rev B Condens Matter 1989;39:4828-30.  DOI  PubMed
               68.       Baibich MN, Broto JM, Fert A, et al. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys Rev Lett
                    1988;61:2472-5.  DOI
               69.       Thompson SM. The discovery, development and future of GMR: The Nobel Prize 2007. J Phys D: Appl Phys 2008;41:093001.  DOI
               70.       Berkowitz AE, Mitchell JR, Carey MJ, et al. Giant magnetoresistance in heterogeneous Cu-Co alloys. Phys Rev Lett 1992;68:3745-8.
                    DOI
               71.       Tsymbal E, Pettifor D. Perspectives of giant magnetoresistance. Solid State Phys :2001. pp. 113-237.  DOI
               72.       Naoe M, Miyamoto Y, Nakagawa S. Preparation of Ni–Fe/Cu multilayers with low coercivity and GMR effect by ion beam
                    sputtering. J Appl Phys 1994;75:6525-7.  DOI
               73.       Wang L, Hu Z, Zhu Y, et al. Electric field-tunable giant magnetoresistance (GMR) sensor with enhanced linear range. ACS Appl
                    Mater Interfaces 2020;12:8855-61.  DOI
               74.       Parkin SSP, K. P. Roche KPR, Takao Suzuki TS. Giant magnetoresistance in antiferromagnetic Co/Cu multilayers grown on Kapton.
                    Jpn J Appl Phys 1992;31:L1246.  DOI
               75.       Melzer M, Lin G, Makarov D, Schmidt OG. Stretchable spin valves on elastomer membranes by predetermined periodic fracture and
                    random wrinkling. Adv Mater 2012;24:6468-72.  DOI  PubMed
               76.       Makarov D, Melzer M, Karnaushenko D, Schmidt OG. Shapeable magnetoelectronics. Appl Phys Rev 2016;3:011101.  DOI
               77.       Melzer M, Kaltenbrunner M, Makarov D, et al. Imperceptible magnetoelectronics. Nat Commun 2015;6:6080.  DOI  PubMed  PMC
               78.       Hua Q, Sun J, Liu H, et al. Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing. Nat
                    Commun 2018;9:244.  DOI  PubMed  PMC
               79.       Karnaushenko D, Makarov D, Yan C, Streubel R, Schmidt OG. Printable giant magnetoresistive devices. Adv Mater 2012;24:4518-
                    22.  DOI  PubMed
               80.       Ha M, Cañón Bermúdez GS, Kosub T, et al. Printable and stretchable giant magnetoresistive sensors for highly compliant and skin-
                    conformal electronics. Adv Mater 2021;33:e2005521.  DOI  PubMed
               81.       Kondo M, Melzer M, Karnaushenko D, et al. Imperceptible magnetic sensor matrix system integrated with organic driver and
                    amplifier circuits. Sci Adv 2020;6:eaay6094.  DOI  PubMed  PMC
               82.       . Cañón Bermúdez GS, Makarov D. Geometrically curved magnetic field sensors for interactive electronics. In: Makarov D, Sheka
                    DD, editors. Curvilinear micromagnetism. Cham: Springer International Publishing; 2022. pp. 375-401.  DOI
               83.       Becker C, Karnaushenko D, Kang T, et al. Self-assembly of highly sensitive 3D magnetic field vector angular encoders. Sci Adv
                    2019;5:eaay7459.  DOI  PubMed  PMC
               84.       Melzer M, Karnaushenko D, Lin G, Baunack S, Makarov D, Schmidt OG. Direct transfer of magnetic sensor devices to elastomeric
                    supports for stretchable electronics. Adv Mater 2015;27:1333-8.  DOI  PubMed  PMC
               85.       Swastika P, Antarnusa G, Suharyadi E, Kato T, Iwata S. Biomolecule detection using wheatstone bridge giant magnetoresistance
                    (GMR) sensors based on CoFeB spin-valve thin film. J Phys : Conf Ser 2018;1011:012060.  DOI
               86.       Cañón Bermúdez GS, Karnaushenko DD, Karnaushenko D, et al. Magnetosensitive e-skins with directional perception for augmented
                    reality. Sci Adv 2018;4:eaao2623.  DOI  PubMed  PMC
               87.       Becker C, Bao B, Karnaushenko DD, et al. A new dimension for magnetosensitive e-skins: active matrix integrated micro-origami
                    sensor arrays. Nat Commun 2022;13:2121.  DOI  PubMed  PMC
               88.       Maury P, Monteil B, Marty L, Duparc A, Mondoly P, Rollin A. Three-dimensional mapping in the electrophysiological laboratory.
                    Arch Cardiovasc Dis 2018;111:456-64.  DOI  PubMed
               89.       Rivkin B, Becker C, Singh B, et al. Electronically integrated microcatheters based on self-assembling polymer films. Sci Adv
                    2021;7:eabl5408.  DOI  PubMed  PMC
               90.       Wang Z, Wang X, Li M, et al. Highly Sensitive flexible magnetic sensor based on anisotropic magnetoresistance effect. Adv Mater
                    2016;28:9370-7.  DOI
               91.       Oliveros Mata ES, Cañón Bermúdez GS, Ha M, et al. Printable anisotropic magnetoresistance sensors for highly compliant
                    electronics. Appl Phys A 2021:127.  DOI
               92.       Guo Y, Deng Y, Wang SX. Multilayer anisotropic magnetoresistive angle sensor. Sens Actuator A Phys 2017;263:159-65.  DOI
               93.       Rittinger J, Taptimthong P, Jogschies L, Wurz MC, Rissing L. Impact of different polyimide-based substrates on the soft magnetic
                    properties of NiFe thin films. Proc Spie 2015:9517.  DOI
               94.       Quynh LK, Tu BD, Anh CV, et al. Design optimization of an anisotropic magnetoresistance sensor for detection of magnetic
                    nanoparticles. Journal of Elec Materi 2019;48:997-1004.  DOI
               95.       Chiolerio A, Allia P, Celasco E, Martino P, Spizzo F, Celegato F. Magnetoresistance anisotropy in a hexagonal lattice of Co antidots
                    obtained by thermal evaporation. J Mag Magn Mater 2010;322:1409-12.  DOI
   80   81   82   83   84   85   86   87   88   89   90