Page 51 - Read Online
P. 51
Page 22 of 23 Yun et al. Soft Sci 2023;3:12 https://dx.doi.org/10.20517/ss.2023.04
94. Kim DH, Lee GJ, Heo S, Kang I, Song YM. Thermostat property of Janus emitter in enclosures. Solar Energy Mater Solar Cells
2021;230:111173. DOI
95. Raman AP, Anoma MA, Zhu L, Rephaeli E, Fan S. Passive radiative cooling below ambient air temperature under direct sunlight.
Nature 2014;515:540-4. DOI PubMed
96. Yazdi M, Sheikhzadeh M. Personal cooling garments: a review. J Text Inst 2014;105:1231-50. DOI
97. GJ, Heo S-Y, Kang I-S, Song YM. Thermostat property of Janus emitter in enclosures. Sol Energy Mater Sol Cells 2021;230:111173.
DOI
98. Xu L, Sun D, Tian Y, Fan T, Zhu Z. Nanocomposite hydrogel for daytime passive cooling enabled by combined effects of radiative
and evaporative cooling. Chem Eng J 2023;457:141231. DOI
99. Congalton D. Shape memory alloys for use in thermally activated clothing, protection against flame and heat. Available from: https://
onlinelibrary.wiley.com/doi/abs/10.1002/(SICI)1099-1018(199909/10)23:5%3C223::AID-FAM687%3E3.0.CO;2-K [Last accessed
on 13 Apr 2023].
100. Shimazaki Y, Katsuta S. Spatiotemporal sweat evaporation and evaporative cooling in thermal environments determined from
wearable sensors. Appl Therm Eng 2019;163:114422. DOI
101. Mondal S. Phase change materials for smart textiles - an overview. Appl Therm Eng 2008;28:1536-50. DOI
102. Shi Y, Ji J, Yin Y, Li Y, Xing Y. Analytical transient phase change heat transfer model of wearable electronics with a thermal
protection substrate. Appl Math Mech Engl Ed 2020;41:1599-610. DOI
103. Liu P, Gao H, Chen X, et al. In situ one-step construction of monolithic silica aerogel-based composite phase change materials for
thermal protection. Compos Part B Eng 2020;195:108072. DOI
104. Chen W, Shi X, Zou J, Chen Z. Wearable fiber-based thermoelectrics from materials to applications. Nano Energy 2021;81:105684.
DOI
105. Selvam C, Manikandan S, Krishna NV, Lamba R, Kaushik S, Mahian O. Enhanced thermal performance of a thermoelectric
generator with phase change materials. Int Commun Heat Mass Transf 2020;114:104561. DOI
106. Zaferani SH, Sams MW, Ghomashchi R, Chen Z. Thermoelectric coolers as thermal management systems for medical applications:
design, optimization, and advancement. Nano Energy 2021;90:106572. DOI
107. Bahru R, Hamzah AA, Mohamed MA. Thermal management of wearable and implantable electronic healthcare devices: perspective
and measurement approach. Int J Energy Res 2021;45:1517-34. DOI
108. Edwards RH, Harris RC, Hultman E, Kaijser L, Koh D, Nordesjö LO. Effect of temperature on muscle energy metabolism and
endurance during successive isometric contractions, sustained to fatigue, of the quadriceps muscle in man. J Physiol 1972;220:335-
52. DOI PubMed PMC
109. Heinonen I, Brothers RM, Kemppainen J, Knuuti J, Kalliokoski KK, Crandall CG. Local heating, but not indirect whole body
heating, increases human skeletal muscle blood flow. J Appl Physiol 2011;111:818-24. DOI PubMed PMC
110. Xu Y, Kraemer D, Song B, et al. Nanostructured polymer films with metal-like thermal conductivity. Nat Commun 2019;10:1771.
DOI PubMed PMC
111. Han Z, Fina A. Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Prog Polym Sci 2011;36:914-
44. DOI
112. Kang SJ, Hong H, Jeong C, et al. Avoiding heating interference and guided thermal conduction in stretchable devices using thermal
conductive composite islands. Nano Res 2021;14:3253-9. DOI
113. Gao T, Yang Z, Chen C, et al. Three-dimensional printed thermal regulation textiles. ACS Nano 2017;11:11513-20. DOI
114. Yu X, Li Y, Wang X, Si Y, Yu J, Ding B. Thermoconductive, moisture-permeable, and superhydrophobic nanofibrous membranes
with interpenetrated boron nitride network for personal cooling fabrics. ACS Appl Mater Interf 2020;12:32078-89. DOI
115. Tan C, Dong Z, Li Y, et al. A high performance wearable strain sensor with advanced thermal management for motion monitoring.
Nat Commun 2020;11:3530. DOI PubMed PMC
116. Heo S, Lee GJ, Song YM. Heat-shedding with photonic structures: radiative cooling and its potential. J Mater Chem C 2022;10:9915-
37. DOI
117. Lee GJ, Kim YJ, Kim HM, Yoo YJ, Song YM. Colored, daytime radiative coolers with thin-film resonators for aesthetic purposes.
Adv Opt Mater 2018;6:1800707. DOI
118. Xu Y, Sun B, Ling Y, et al. Multiscale porous elastomer substrates for multifunctional on-skin electronics with passive-cooling
capabilities. Proc Natl Acad Sci USA 2020;117:205-13. DOI
119. Tang KM, Chau KH, Kan CW, Fan JT. Assessing the accumulated stickiness magnitude from fabric-skin friction: effect of wetness
level of various fabrics. R Soc Open Sci 2018;5:180860. DOI PubMed PMC
120. Peng Y, Li W, Liu B, et al. Integrated cooling (i-Cool) textile of heat conduction and sweat transportation for personal perspiration
management. Nat Commun 2021;12:6122. DOI
121. Zhou Y, Zhang T, Wang F, Yu Y. Performance analysis of a novel thermoelectric assisted indirect evaporative cooling system.
Energy 2018;162:299-308. DOI
122. Chen Y, Qiu F, Yang D, Li Y, Liang H, Zhang T. Multifunctional hybrid membranes with enhanced heat dissipation and sweat
transportation for wearable applications. ACS Appl Energy Mater 2022;5:11892-9. DOI
123. Zhang X, Yang W, Shao Z, et al. A moisture-wicking passive radiative cooling hierarchical metafabric. ACS Nano 2022;16:2188-97.
DOI

