Page 174 - Read Online
P. 174

Tu et al. Soft Sci 2023;3:25  https://dx.doi.org/10.20517/ss.2023.15            Page 13 of 15

               Financial support and sponsorship
               Tu J acknowledges the research scholarship awarded by the Institute of Flexible Electronics Technology of
               Tsinghua, Zhejiang (IFET-THU), Nanyang Technological University (NTU), and Qiantang Science and
               Technology Innovation Center, China (QSTIC).

               Conflicts of interest
               The authors declare no conflicts of interest.

               Ethical approval and consent to participate
               Not applicable.

               Consent for publication
               Not applicable.


               Copyright
               © The Author(s) 2023.


               REFERENCES
               1.       Lumpkin EA, Caterina MJ. Mechanisms of sensory transduction in the skin. Nature 2007;445:858-65.  DOI  PubMed
               2.       Ohyama T, Schneider-Mizell CM, Fetter RD, et al. A multilevel multimodal circuit enhances action selection in drosophila. Nature
                   2015;520:633-9.  DOI  PubMed
               3.       Tan H, Zhou Y, Tao Q, Rosen J, van Dijken S. Bioinspired multisensory neural network with crossmodal integration and recognition.
                   Nat Commun 2021;12:1120.  DOI  PubMed  PMC
               4.       Ernst MO, Banks MS. Humans integrate visual and haptic information in a statistically optimal fashion. Nature 2002;415:429-33.  DOI
                   PubMed
               5.       Macaluso E, Driver J. Multisensory spatial interactions: a window onto functional integration in the human brain. Trends Neurosci
                   2005;28:264-71.  DOI  PubMed
               6.       Green AM, Angelaki DE. Multisensory integration: resolving sensory ambiguities to build novel representations. Curr Opin Neurobiol
                   2010;20:353-60.  DOI  PubMed  PMC
               7.       Ohshiro T, Angelaki DE, DeAngelis GC. A normalization model of multisensory integration. Nat Neurosci 2011;14:775-82.  DOI
                   PubMed  PMC
               8.       Hagmann CE, Russo N. Multisensory integration of redundant trisensory stimulation. Atten Percept Psychophys 2016;78:2558-68.
                   DOI  PubMed  PMC
               9.       Zhu B, Wang H, Liu Y, et al. Skin-inspired haptic memory arrays with an electrically reconfigurable architecture. Adv Mater
                   2016;28:1559-66.  DOI  PubMed
               10.      Chen S, Jiang K, Lou Z, Chen D, Shen G. Recent developments in graphene-based tactile sensors and e-skins. Adv Mater Technol
                   2018;3:1700248.  DOI
               11.      Jeon S, Lim S, Trung TQ, Jung M, Lee N. Flexible multimodal sensors for electronic skin: principle, materials, device, array
                   architecture, and data acquisition method. Proc IEEE 2019;107:2065-83.  DOI
               12.      Xu K, Lu Y, Takei K. Multifunctional skin-inspired flexible sensor systems for wearable electronics. Adv Mater Technol
                   2019;4:1800628.  DOI
               13.      Li H, Ma Y, Liang Z, et al. Wearable skin-like optoelectronic systems with suppression of motion artifacts for cuff-less continuous
                   blood pressure monitor. Natl Sci Rev 2020;7:849-62.  DOI  PubMed  PMC
               14.      Wu  X,  Ahmed  M,  Khan  Y,  et  al.  A  potentiometric  mechanotransduction  mechanism  for  novel  electronic  skins.  Sci  Adv
                   2020;6:eaba1062.  DOI  PubMed  PMC
               15.      Choi I, Lee JY, Lee SH. Bottom-up and top-down modulation of multisensory integration. Curr Opin Neurobiol 2018;52:115-22.  DOI
                   PubMed
               16.      Li H, Xu Y, Li X, et al. Epidermal inorganic optoelectronics for blood oxygen measurement. Adv Healthc Mater 2017;6:1601013.
                   DOI  PubMed
               17.      Boutry CM, Negre M, Jorda M, et al. A hierarchically patterned, bioinspired e-skin able to detect the direction of applied pressure for
                   robotics. Sci Robot 2018;3:eaau6914.  DOI  PubMed
               18.      Choi S, Han SI, Jung D, et al. Highly conductive, stretchable and biocompatible Ag-Au core-sheath nanowire composite for wearable
                   and implantable bioelectronics. Nat Nanotechnol 2018;13:1048-56.  DOI  PubMed
               19.      Wang M, Wang W, Leow WR, et al. Enhancing the matrix addressing of flexible sensory arrays by a highly nonlinear threshold
                   switch. Adv Mater 2018;30:e1802516.  DOI  PubMed
   169   170   171   172   173   174   175   176   177   178   179