Page 174 - Read Online
P. 174
Tu et al. Soft Sci 2023;3:25 https://dx.doi.org/10.20517/ss.2023.15 Page 13 of 15
Financial support and sponsorship
Tu J acknowledges the research scholarship awarded by the Institute of Flexible Electronics Technology of
Tsinghua, Zhejiang (IFET-THU), Nanyang Technological University (NTU), and Qiantang Science and
Technology Innovation Center, China (QSTIC).
Conflicts of interest
The authors declare no conflicts of interest.
Ethical approval and consent to participate
Not applicable.
Consent for publication
Not applicable.
Copyright
© The Author(s) 2023.
REFERENCES
1. Lumpkin EA, Caterina MJ. Mechanisms of sensory transduction in the skin. Nature 2007;445:858-65. DOI PubMed
2. Ohyama T, Schneider-Mizell CM, Fetter RD, et al. A multilevel multimodal circuit enhances action selection in drosophila. Nature
2015;520:633-9. DOI PubMed
3. Tan H, Zhou Y, Tao Q, Rosen J, van Dijken S. Bioinspired multisensory neural network with crossmodal integration and recognition.
Nat Commun 2021;12:1120. DOI PubMed PMC
4. Ernst MO, Banks MS. Humans integrate visual and haptic information in a statistically optimal fashion. Nature 2002;415:429-33. DOI
PubMed
5. Macaluso E, Driver J. Multisensory spatial interactions: a window onto functional integration in the human brain. Trends Neurosci
2005;28:264-71. DOI PubMed
6. Green AM, Angelaki DE. Multisensory integration: resolving sensory ambiguities to build novel representations. Curr Opin Neurobiol
2010;20:353-60. DOI PubMed PMC
7. Ohshiro T, Angelaki DE, DeAngelis GC. A normalization model of multisensory integration. Nat Neurosci 2011;14:775-82. DOI
PubMed PMC
8. Hagmann CE, Russo N. Multisensory integration of redundant trisensory stimulation. Atten Percept Psychophys 2016;78:2558-68.
DOI PubMed PMC
9. Zhu B, Wang H, Liu Y, et al. Skin-inspired haptic memory arrays with an electrically reconfigurable architecture. Adv Mater
2016;28:1559-66. DOI PubMed
10. Chen S, Jiang K, Lou Z, Chen D, Shen G. Recent developments in graphene-based tactile sensors and e-skins. Adv Mater Technol
2018;3:1700248. DOI
11. Jeon S, Lim S, Trung TQ, Jung M, Lee N. Flexible multimodal sensors for electronic skin: principle, materials, device, array
architecture, and data acquisition method. Proc IEEE 2019;107:2065-83. DOI
12. Xu K, Lu Y, Takei K. Multifunctional skin-inspired flexible sensor systems for wearable electronics. Adv Mater Technol
2019;4:1800628. DOI
13. Li H, Ma Y, Liang Z, et al. Wearable skin-like optoelectronic systems with suppression of motion artifacts for cuff-less continuous
blood pressure monitor. Natl Sci Rev 2020;7:849-62. DOI PubMed PMC
14. Wu X, Ahmed M, Khan Y, et al. A potentiometric mechanotransduction mechanism for novel electronic skins. Sci Adv
2020;6:eaba1062. DOI PubMed PMC
15. Choi I, Lee JY, Lee SH. Bottom-up and top-down modulation of multisensory integration. Curr Opin Neurobiol 2018;52:115-22. DOI
PubMed
16. Li H, Xu Y, Li X, et al. Epidermal inorganic optoelectronics for blood oxygen measurement. Adv Healthc Mater 2017;6:1601013.
DOI PubMed
17. Boutry CM, Negre M, Jorda M, et al. A hierarchically patterned, bioinspired e-skin able to detect the direction of applied pressure for
robotics. Sci Robot 2018;3:eaau6914. DOI PubMed
18. Choi S, Han SI, Jung D, et al. Highly conductive, stretchable and biocompatible Ag-Au core-sheath nanowire composite for wearable
and implantable bioelectronics. Nat Nanotechnol 2018;13:1048-56. DOI PubMed
19. Wang M, Wang W, Leow WR, et al. Enhancing the matrix addressing of flexible sensory arrays by a highly nonlinear threshold
switch. Adv Mater 2018;30:e1802516. DOI PubMed

