Page 639 - Read Online
P. 639
Page 18 of 18 Wilgus. Plast Aesthet Res 2020;7:54 I http://dx.doi.org/10.20517/2347-9264.2020.150
155. Jiang W, Ting K, Lee S, Zara JN, Song R, et al. Fibromodulin reduces scar size and increases scar tensile strength in normal and
excessive-mechanical-loading porcine cutaneous wounds. J Cell Mol Med 2018;22:2510-3.
156. Stoff A, Rivera AA, Mathis JM, Moore ST, Banerjee NS, et al. Effect of adenoviral mediated overexpression of fibromodulin on human
dermal fibroblasts and scar formation in full-thickness incisional wounds. J Mol Med (Berl) 2007;85:481-96.
157. Pang X, Dong N, Zheng Z. Small leucine-rich proteoglycans in skin wound healing. Front Pharmacol 2019;10:1649.
158. Breuing K, Eriksson E, Liu P, Miller DR. Healing of partial thickness porcine skin wounds in a liquid environment. J Surg Res
1992;52:50-8.
159. Junker JP, Kamel RA, Caterson EJ, Eriksson E. Clinical impact upon wound healing and inflammation in moist, wet, and dry
environments. Adv Wound Care (New Rochelle) 2013;2:348-56.
160. Reish RG, Zuhaili B, Bergmann J, Aflaki P, Koyama T, et al. Modulation of scarring in a liquid environment in the Yorkshire pig. Wound
Repair Regen 2009;17:806-16.
161. Mustoe TA, Gurjala A. The role of the epidermis and the mechanism of action of occlusive dressings in scarring. Wound Repair Regen
2011;19 Suppl 1:s16-21.
162. Gallant-Behm CL, Mustoe TA. Occlusion regulates epidermal cytokine production and inhibits scar formation. Wound Repair Regen
2010;18:235-44.
163. Zhao J, Zhong A, Friedrich EE, Jia S, Xie P, et al. S100A12 induced in the epidermis by reduced hydration activates dermal fibroblasts
and causes dermal fibrosis. J Invest Dermatol 2017;137:650-9.
164. Zhong A, Xu W, Zhao J, Xie P, Jia S, et al. S100A8 and S100A9 are induced by decreased hydration in the epidermis and promote
fibroblast activation and fibrosis in the dermis. Am J Pathol 2016;186:109-22.
165. O’Shaughnessy KD, De La Garza M, Roy NK, Mustoe TA. Homeostasis of the epidermal barrier layer: a theory of how occlusion
reduces hypertrophic scarring. Wound Repair Regen 2009;17:700-8.
166. Gurtner GC, Dauskardt RH, Wong VW, Bhatt KA, Wu K, et al. Improving cutaneous scar formation by controlling the mechanical
environment: large animal and phase I studies. Ann Surg 2011;254:217-25.
167. Dohi T, Padmanabhan J, Akaishi S, Than PA, Terashima M, et al. The interplay of mechanical stress, strain, and stiffness at the keloid
periphery correlates with increased caveolin-1/ROCK signaling and scar progression. Plast Reconstr Surg 2019;144:58e-67.
168. Pakshir P, Alizadehgiashi M, Wong B, Coelho NM, Chen X, et al. Dynamic fibroblast contractions attract remote macrophages in fibrillar
collagen matrix. Nat Commun 2019;10:1850.
169. Lim AF, Weintraub J, Kaplan EN, Januszyk M, Cowley C, et al. The embrace device significantly decreases scarring following scar
revision surgery in a randomized controlled trial. Plast Reconstr Surg 2014;133:398-405.
170. Longaker MT, Rohrich RJ, Greenberg L, Furnas H, Wald R, et al. A randomized controlled trial of the embrace advanced scar therapy
device to reduce incisional scar formation. Plast Reconstr Surg 2014;134:536-46.
171. Januszyk M, Wong VW, Bhatt KA, Vial IN, Paterno J, et al. Mechanical offloading of incisional wounds is associated with transcriptional
downregulation of inflammatory pathways in a large animal model. Organogenesis 2014;10:186-93.
172. Ma K, Kwon SH, Padmanabhan J, Duscher D, Trotsyuk AA, et al. Controlled delivery of a focal adhesion kinase inhibitor results in
accelerated wound closure with decreased scar formation. J Invest Dermatol 2018;138:2452-60.