Page 634 - Read Online
P. 634

Wilgus. Plast Aesthet Res 2020;7:54  I  http://dx.doi.org/10.20517/2347-9264.2020.150                                            Page 13 of 18

               REFERENCES
               1.   Eming SA, Martin P, Tomic-Canic M. Wound repair and regeneration: mechanisms, signaling, and translation. Sci Transl Med
                   2014;6:265sr6.
               2.   Gurtner GC, Werner S, Barrandon Y, Longaker MT. Wound repair and regeneration. Nature 2008;453:314-21.
               3.   Martin P. Wound healing--aiming for perfect skin regeneration. Science 1997;276:75-81.
               4.   Aarabi S, Longaker MT, Gurtner GC. Hypertrophic scar formation following burns and trauma: new approaches to treatment. PLoS Med
                   2007;4:e234.
               5.   Corr DT, Gallant-Behm CL, Shrive NG, Hart DA. Biomechanical behavior of scar tissue and uninjured skin in a porcine model. Wound
                   Repair Regen 2009;17:250-9.
               6.   Dunn MG, Silver FH, Swann DA. Mechanical analysis of hypertrophic scar tissue: structural basis for apparent increased rigidity. J Invest
                   Dermatol 1985;84:9-13.
               7.   Brown BC, McKenna SP, Siddhi K, McGrouther DA, Bayat A. The hidden cost of skin scars: quality of life after skin scarring. J Plast
                   Reconstr Aesthet Surg 2008;61:1049-58.
               8.   Wilgus TA. Immune cells in the healing skin wound: influential players at each stage of repair. Pharmacol Res 2008;58:112-6.
               9.   Carlsson AH, Rose LF, Fletcher JL, Wu JC, Leung KP, et al. Antecedent thermal injury worsens split-thickness skin graft quality: a
                   clinically relevant porcine model of full-thickness burn, excision and grafting. Burns 2017;43:223-31.
               10.  Jabeen S, Clough ECS, Thomlinson AM, Chadwick SL, Ferguson MWJ, et al. Partial thickness wound: does mechanism of injury
                   influence healing? Burns 2019;45:531-42.
               11.  Morris MW Jr, Allukian M 3rd, Herdrich BJ, Caskey RC, Zgheib C, et al. Modulation of the inflammatory response by increasing fetal
                   wound size or interleukin-10 overexpression determines wound phenotype and scar formation. Wound Repair Regen 2014;22:406-14.
               12.  Dunkin CS, Pleat JM, Gillespie PH, Tyler MP, Roberts AH, et al. Scarring occurs at a critical depth of skin injury: precise measurement in
                   a graduated dermal scratch in human volunteers. Plast Reconstr Surg 2007;119:1722-32; discussion 1733-4.
               13.  Qian LW, Fourcaudot AB, Yamane K, You T, Chan RK, et al. Exacerbated and prolonged inflammation impairs wound healing and
                   increases scarring. Wound Repair Regen 2016;24:26-34.
               14.  Zhang Q, Yamaza T, Kelly AP, Shi S, Wang S, et al. Tumor-like stem cells derived from human keloid are governed by the inflammatory
                   niche driven by IL-17/IL-6 axis. PLoS One 2009;4:e7798.
               15.  Zhang M, Xu Y, Liu Y, Cheng Y, Zhao P, et al. Chemokine-like factor 1 (CKLF-1) is overexpressed in keloid patients: a potential
                   indicating factor for keloid-predisposed individuals. Medicine (Baltimore) 2016;95:e3082.
               16.  Jumper N, Hodgkinson T, Paus R, Bayat A. Site-specific gene expression profiling as a novel strategy for unravelling keloid disease
                   pathobiology. PLoS One 2017;12:e0172955.
               17.  Dong X, Zhang C, Ma S, Wen H. Mast cell chymase in keloid induces profibrotic response via transforming growth factor-beta1/Smad
                   activation in keloid fibroblasts. Int J Clin Exp Pathol 2014;7:3596-607.
               18.  Craig SS, DeBlois G, Schwartz LB. Mast cells in human keloid, small intestine, and lung by an immunoperoxidase technique using a
                   murine monoclonal antibody against tryptase. Am J Pathol 1986;124:427-35.
               19.  Boyce DE, Ciampolini J, Ruge F, Murison MS, Harding KG. Inflammatory-cell subpopulations in keloid scars. Br J Plast Surg
                   2001;54:511-6.
               20.  Jiao H, Fan J, Cai J, Pan B, Yan L, et al. Analysis of characteristics similar to autoimmune disease in keloid patients. Aesthetic Plast Surg
                   2015;39:818-25.
               21.  Shaker SA, Ayuob NN, Hajrah NH. Cell talk: a phenomenon observed in the keloid scar by immunohistochemical study. Appl
                   Immunohistochem Mol Morphol 2011;19:153-9.
               22.  Arbi S, Eksteen EC, Oberholzer HM, Taute H, Bester MJ. Premature collagen fibril formation, fibroblast-mast cell interactions and mast
                   cell-mediated phagocytosis of collagen in keloids. Ultrastruct Pathol 2015;39:95-103.
               23.  Bagabir R, Byers RJ, Chaudhry IH, Müller W, Paus R, et al. Site-specific immunophenotyping of keloid disease demonstrates immune
                   upregulation and the presence of lymphoid aggregates. Br J Dermatol 2012;167:1053-66.
               24.  Novak ML, Koh TJ. Macrophage phenotypes during tissue repair. J Leukoc Biol 2013;93:875-81.
               25.  Theoret CL, Olutoye OO, Parnell LK, Hicks J. Equine exuberant granulation tissue and human keloids: a comparative histopathologic
                   study. Vet Surg 2013;42:783-9.
               26.  Gaber MA, Seliet IA, Ehsan NA, Megahed MA. Mast cells and angiogenesis in wound healing. Anal Quant Cytopathol Histpathol
                   2014;36:32-40.
               27.  Hellström M, Hellström S, Engström-Laurent A, Bertheim U. The structure of the basement membrane zone differs between keloids,
                   hypertrophic scars and normal skin: a possible background to an impaired function. J Plast Reconstr Aesthet Surg 2014;67:1564-72.
               28.  Aarabi S, Bhatt KA, Shi Y, Paterno J, Chang EI, et al. Mechanical load initiates hypertrophic scar formation through decreased cellular
                   apoptosis. FASEB J 2007;21:3250-61.
               29.  Wong VW, Paterno J, Sorkin M, Glotzbach JP, Levi K, et al. Mechanical force prolongs acute inflammation via T-cell-dependent
                   pathways during scar formation. FASEB J 2011;25:4498-510.
               30.  Wang J, Ding J, Jiao H, Honardoust D, Momtazi M, et al. Human hypertrophic scar-like nude mouse model: characterization of the
                   molecular and cellular biology of the scar process. Wound Repair Regen 2011;19:274-85.
               31.  Zhu Z, Ding J, Ma Z, Iwashina T, Tredget EE. The natural behavior of mononuclear phagocytes in HTS formation. Wound Repair Regen
                   2016;24:14-25.
               32.  Ibrahim MM, Bond J, Bergeron A, Miller KJ, Ehanire T, et al. A novel immune competent murine hypertrophic scar contracture model: a
   629   630   631   632   633   634   635   636   637   638   639