Page 98 - Read Online
P. 98

Mataix et al. Plast Aesthet Res 2020;7:69  I  http://dx.doi.org/10.20517/2347-9264.2020.138                                    Page 15 of 16

                   resistance in multiple myeloma cells via redox, metabolic and translational reprogramming. Oncotarget 2016;7:66360-85.
               53.  Abrahams A, Mouchet N, Gouault N, et al. Integrating targeted gene expression and a skin model system to identify functional inhibitors
                   of the UV activated p38 MAP kinase. Photochem Photobiol Sci 2016;15:1468-75.
               54.  Clementi E, Inglin L, Beebe E, Gsell C, Garajova Z, Markkanen E. Persistent DNA damage triggers activation of the integrated stress
                   response to promote cell survival under nutrient restriction. BMC Biol 2020;18:36.
               55.  Dufey E, Bravo-San Pedro JM, Eggers C, et al. Genotoxic stress triggers the activation of IRE1α-dependent RNA decay to modulate the
                   DNA damage response. Nat Commun 2020;11:2401.
               56.  Wang Y, Wang L, Wen X, et al. NF-κB signaling in skin aging. Mech Ageing Dev 2019;184:111160.
               57.  Tian X, Cui Z, Liu S, Zhou J, Cui R. Melanosome transport and regulation in development and disease. Pharmacol Ther 2020;107707.
               58.  Rojo de la Vega M, Krajisnik A, Zhang DD, Wondrak GT. Targeting NRF2 for improved skin barrier function and photoprotection: focus
                   on the achiote-derived apocarotenoid bixin. Nutrients 2017;9:1371.
               59.  Del Vecchio CA, Feng Y, Sokol ES, et al. De-differentiation confers multidrug resistance via noncanonical PERK-Nrf2 signaling. PLoS
                   Biol 2014;12:e1001945.
               60.  Lu MC, Ji JA, Jiang ZY, You QD. The Keap1-Nrf2-ARE pathway as a potential preventive and therapeutic target: an update. Med Res
                   Rev 2016;36:924-63.
               61.  Kudo I, Hosaka M, Haga A, et al. The regulation mechanisms of AhR by molecular chaperone complex. J Biochem 2018;163:223-32.
               62.  Hidaka T, Ogawa E, Kobayashi EH, et al. The aryl hydrocarbon receptor AhR links atopic dermatitis and air pollution via induction of the
                   neurotrophic factor artemin. Nat Immunol 2017;18:64-73.
               63.  Rothhammer V, Quintana FJ. The aryl hydrocarbon receptor: an environmental sensor integrating immune responses in health and
                   disease. Nat Rev Immunol 2019;19:184-97.
               64.  Lindén J, Lensu S, Tuomisto J, Pohjanvirta R. Dioxins, the aryl hydrocarbon receptor and the central regulation of energy balance. Front
                   Neuroendocrinol 2010;31:452-78.
               65.  Quan T, Qin Z, Xia W, Shao Y, Voorhees JJ, Fisher GJ. Matrix-degrading metalloproteinases in photoaging. J Investig Dermatol Symp
                   Proc 2009;14:20-4.
               66.  Bonnans C, Chou J, Werb Z. Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol 2014;15:786-801.
               67.  Szentléleky E, Szegeczki V, Karanyicz E, et al. Pituitary adenylate cyclase activating polypeptide (PACAP) reduces oxidative and
                   mechanical stress-evoked matrix degradation in chondrifying cell cultures. Int J Mol Sci 2019;20:168.
               68.  Shin JW, Kwon SH, Choi JY, et al. Molecular mechanisms of dermal aging and antiaging approaches. Int J Mol Sci 2019;20:2126.
               69.  Martel J, Ojcius DM, Ko YF, Chang CJ, Young JD. Antiaging effects of bioactive molecules isolated from plants and fungi. Med Res Rev
                   2019;39:1515-52.
               70.  Panagiotidou E, Chondrogianni N. We are what we eat: ubiquitin-proteasome system (UPS) modulation through dietary products. In:
                   Barrio R, Sutherland JD, Rodriguez MS, editors. Proteostasis and disease. Cham: Springer International Publishing; 2020. pp. 329-48.
               71.  Gombau L, García F, Lahoz A, et al. Polypodium leucotomos extract: antioxidant activity and disposition. Toxicol In Vitro 2006;20:464-71.
               72.  Gonzalez S, Gilaberte Y, Philips N, Juarranz A. Fernblock, a nutriceutical with photoprotective properties and potential preventive agent
                   for skin photoaging and photoinduced skin cancers. Int J Mol Sci 2011;12:8466-75.
               73.  Parrado C, Mascaraque M, Gilaberte Y, Juarranz A, Gonzalez S. Fernblock (Polypodium leucotomos extract): molecular mechanisms and
                   pleiotropic effects in light-related skin conditions, photoaging and skin cancers, a Review. Int J Mol Sci 2016;17:1026.
               74.  Zamarrón A, Lorrio S, González S, Juarranz Á. Fernblock prevents dermal cell damage induced by visible and infrared A radiation. Int J
                   Mol Sci 2018;19:2250.
               75.  Young M. Guinness book of world records 1997. London: Guinness Publishing Ltd; 1997. pp. 42-3.
               76.  Day T, Ruhland C, Xiong F. Influence of solar ultraviolet-B radiation on Antarctic terrestrial plants: results from a 4-year field study. J
                   Photochem Photobiol B 2001;62:78-87.
               77.  Matji-Tuduri JA, Brieva-Delgado A, Domínguez M, et al. Use of extracts of Deschampsia antarctica for counteracting human skin barrier
                   damage caused by environmental aggressions (Patent EP 3471 835 B1). ES: European Patent Office; 2019.
               78.  Köhler H, Contreras RA, Pizarro M, Cortés-Antíquera R, Zúñiga GE. Antioxidant responses induced by UVB radiation in Deschampsia
                   antarctica desv. Front Plant Sci 2017;8:921.
               79.  Pérez-Torres E, García A, Dinamarca J, et al. The role of photochemical quenching and antioxidants in photoprotection of Deschampsia
                   antarctica. Funct Plant Biol 2004;31:731-41.
               80.  Ortiz-Espín A, Morel E, Juarranz Á, et al. An extract from the plant Deschampsia antarctica protects fibroblasts from senescence induced
                   by hydrogen peroxide. Oxid Med Cell Longev 2017;2017:2694945.
               81.  Zamarrón A, Morel E, Lucena SR, et al. Extract of Deschampsia antarctica (EDA) prevents dermal cell damage induced by UV radiation
                   and 2,3,7,8-Tetrachlorodibenzo-p-dioxin. Int J Mol Sci 2019;20:1356.
               82.  Fernández-Maros S, Calvo-Sánchez M, Pérez-Davó A, Vitale M, Espada J. Protective effects of aqueous extract of Deschampsia
                   antarctica against urban air pollutants in human skin model. In 28th EADV Congress. 2019. Available from: https://eadvmadrid2019.org/
                   wp-content/uploads/2019/09/e-Poster-list.pdf. [Last accessed on 16 Nov 2020]
               83.  Ortiz-Espín AM, Delgado Rubín de Célix A, Brieva A, Guerrero A, González S, Sevilla F. The extract from Deschampsia antarctica
                   (Edafence®) protects fibroblasts viability from the effects of environmental oxidants and pollutants. In 76th Society of Investigative
                   Dermatology Annual Meeting. 2017. Available from: https://cdn.ymaws.com/www.sidnet.org/resource/resmgr/docs/SID_Portland_
                   Final_5_web.pdf. [Last accessed on 16 Nov 2020]
               84.  Juarranz Á. IFC- P1403C: Efecto de EDAFENCE® sobre el daño al DNA, muerte celular, sufrimiento mitocondrial, MMP-1 y expresión
   93   94   95   96   97   98   99   100   101   102   103