Page 35 - Read Online
P. 35
Allam et al. Plast Aesthet Res 2024;11:19 https://dx.doi.org/10.20517/2347-9264.2024.21 Page 15 of 16
40. Wu Y, Suo Y, Wang Z, et al. First clinical applications for the NIR-II imaging with ICG in microsurgery. Front Bioeng Biotechnol
2022;10:1042546. DOI PubMed PMC
41. Van Den Hoven P, Verduijn PS, Van Capelle L, et al. Quantification of near-infrared fluorescence imaging with indocyanine green in
free flap breast reconstruction. J Plast Reconstr Aesthet Surg 2022;75:1820-5. DOI
42. Moyer HR, Losken A. Predicting mastectomy skin flap necrosis with indocyanine green angiography: the gray area defined. Plast
Reconstr Surg 2012;129:1043-8. DOI PubMed
43. Phillips BT, Lanier ST, Conkling N, et al. Intraoperative perfusion techniques can accurately predict mastectomy skin flap necrosis in
breast reconstruction: results of a prospective trial. Plast Reconstr Surg 2012;129:778e-88e. DOI
44. Cahill RA, O'Shea DF, Khan MF, et al. Artificial intelligence indocyanine green (ICG) perfusion for colorectal cancer intra-operative
tissue classification. Br J Surg 2021;108:5-9. DOI
45. Poplack SP, Park EY, Ferrara KW. Optical breast imaging: a review of physical principles, technologies, and clinical applications. J
Breast Imaging 2023;5:520-37. DOI PubMed PMC
46. Oppermann C, Dohrn N, Yikilmaz H, Falk Klein M, Eriksen T, Gögenur I. Continuous organ perfusion monitoring using indocyanine
green in a piglet model. Surg Endosc 2023;37:1601-10. DOI
47. Karim S, Qadir A, Farooq U, Shakir M, Laghari AA. Hyperspectral imaging: a review and trends towards medical imaging. Curr Med
Imaging 2022;19:417-27. DOI PubMed
48. Studier-Fischer A, Seidlitz S, Sellner J, et al. Spectral organ fingerprints for machine learning-based intraoperative tissue classification
with hyperspectral imaging in a porcine model. Sci Rep 2022;12:11028. DOI PubMed PMC
49. Thiem DGE, Frick RW, Goetze E, Gielisch M, Al-Nawas B, Kämmerer PW. Hyperspectral analysis for perioperative perfusion
monitoring-a clinical feasibility study on free and pedicled flaps. Clin Oral Investig 2021;25:933-45. DOI PubMed PMC
50. Knoedler S, Hoch CC, Huelsboemer L, et al. Postoperative free flap monitoring in reconstructive surgery-man or machine? Front Surg
2023;10:1130566. DOI PubMed PMC
51. Hummelink SLM, Paulus VAA, Wentink EC, Ulrich DJO. Development and evaluation of a remote patient monitoring system in
autologous breast reconstruction. Plast Reconstr Surg Glob Open 2022;10:e4008. DOI PubMed PMC
52. Khavanin N, Darrach H, Kraenzlin F, Yesantharao PS, Sacks JM. The intra.Ox near-infrared spectrometer measures variations in flap
oxygenation that correlate to flap necrosis in a preclinical rodent model. Plast Reconstr Surg 2021;147:1097-104. DOI
53. Largo RD, Selber JC, Garvey PB, et al. Outcome analysis of free flap salvage in outpatients presenting with microvascular
compromise. Plast Reconstr Surg 2018;141:20e-7e. DOI
54. Xie R, Zhang Y, Liu Q, Huang X, Liu M. A wireless infrared thermometry device for postoperative flap monitoring: proof of concept
in patients. Surg Innov 2023;30:636-9. DOI
55. Oda H, Beker L, Kaizawa Y, et al. A novel technology for free flap monitoring: pilot study of a wireless, biodegradable sensor. J
Reconstr Microsurg 2020;36:182-90. DOI
56. Halani SH, Hembd AS, Li X, et al. Flap monitoring using transcutaneous oxygen or carbon dioxide measurements. J Hand Microsurg
2022;14:10-8. DOI PubMed PMC
57. Guye ML, Motamed C, Chemam S, Leymarie N, Suria S, Weil G. Remote peripheral tissue oxygenation does not predict postoperative
free flap complications in complex head and neck cancer surgery: a prospective cohort study. Anaesth Crit Care Pain Med 2017;36:27-
31. DOI
58. Marks H, Bucknor A, Roussakis E, et al. A paintable phosphorescent bandage for postoperative tissue oxygen assessment in DIEP flap
reconstruction. Sci Adv 2020;6:eabd1061. DOI
59. Khanna AK, Ahuja S, Weller RS, Harwood TN. Postoperative ward monitoring - why and what now? Best Pract Res Clin
Anaesthesiol 2019;33:229-45. DOI PubMed
60. Papavasiliou T, Ubong S, Khajuria A, Chatzimichail S, Chan JCY. 3D printed chest wall: a tool for advanced microsurgical training
simulating depth and limited view. Plast Reconstr Surg Glob Open 2021;9:e3817. DOI PubMed PMC
61. Leung R, Shi G. Building your future holographic mentor: can we use mixed reality holograms for visual spatial motor skills
acquisition in surgical education? Surg Innov 2024;31:82-91. DOI PubMed PMC
62. Favier V, Zemiti N, Caravaca Mora O, et al. Geometric and mechanical evaluation of 3D-printing materials for skull base anatomical
education and endoscopic surgery simulation - a first step to create reliable customized simulators. PLoS One 2017;12:e0189486. DOI
PubMed PMC
63. Lichtenstein JT, Zeller AN, Lemound J, et al. 3D-printed simulation device for orbital surgery. J Surg Educ 2017;74:2-8. DOI
64. Lobb DC, Cottler P, Dart D, Black JS. The use of patient-specific three-dimensional printed surgical models enhances plastic surgery
resident education in craniofacial surgery. J Craniofac Surg 2019;30:339-41. DOI PubMed
65. Smith DM, Aston SJ, Cutting CB, Oliker A. Applications of virtual reality in aesthetic surgery. Plast Reconstr Surg 2005;116:898-
904; discussion 905-6. DOI PubMed
66. Smith DM, Oliker A, Carter CR, Kirov M, McCarthy JG, Cutting CB. A virtual reality atlas of craniofacial anatomy. Plast Reconstr
Surg 2007;120:1641-6. DOI PubMed
67. Tolsdorff B, Pommert A, Höhne KH, et al. Virtual reality: a new paranasal sinus surgery simulator. Laryngoscope 2010;120:420-6.
DOI
68. de Runz A, Boccara D, Bertheuil N, Claudot F, Brix M, Simon E. Three-dimensional imaging, an important factor of decision in
breast augmentation. Ann Chir Plast Esthet 2018;63:134-9. DOI PubMed