Page 34 - Read Online
P. 34
Page 14 of 16 Allam et al. Plast Aesthet Res 2024;11:19 https://dx.doi.org/10.20517/2347-9264.2024.21
planning in breast reconstruction: a prospective case series. Gland Surg 2021;10:2192-9. DOI PubMed PMC
12. Seth I, Lindhardt J, Jakobsen A, et al. Improving visualization of intramuscular perforator course: augmented reality headsets for DIEP
flap breast reconstruction. Plast Reconstr Surg Glob Open 2023;11:e5282. DOI PubMed PMC
13. Cevik J, Seth I, Rozen WM. Transforming breast reconstruction: the pioneering role of artificial intelligence in preoperative planning.
Gland Surg 2023;12:1271-5. DOI PubMed PMC
14. Jacobson NM, Carerra E, Treat A, McDonnell M, Mathes D, Kaoutzanis C. Hybrid modeling techniques for 3D printed deep inferior
epigastric perforator flap models. 3D Print Med 2023;9:26. DOI PubMed PMC
15. Mehta S, Byrne N, Karunanithy N, Farhadi J. 3D printing provides unrivalled bespoke teaching tools for autologous free flap breast
reconstruction. J Plast Reconstr Aesthet Surg 2016;69:578-80. DOI PubMed
16. Cholok DJ, Fischer MJ, Leuze CW, Januszyk M, Daniel BL, Momeni A. Spatial fidelity of microvascular perforating vessels as
perceived by augmented reality virtual projections. Plast Reconstr Surg 2024;153:524-34. DOI PubMed
17. Hummelink S, Hoogeveen YL, Schultze Kool LJ, Ulrich DJO. A new and innovative method of preoperatively planning and projecting
vascular anatomy in DIEP flap breast reconstruction: a randomized controlled trial. Plast Reconstr Surg 2019;143:1151e-8e. DOI
PubMed
18. Mavioso C, Araújo RJ, Oliveira HP, et al. Automatic detection of perforators for microsurgical reconstruction. Breast 2020;50:19-24.
DOI PubMed PMC
19. O'Neill AC, Yang D, Roy M, Sebastiampillai S, Hofer SOP, Xu W. Development and evaluation of a machine learning prediction
model for flap failure in microvascular breast reconstruction. Ann Surg Oncol 2020;27:3466-75. DOI PubMed
20. Khan MTA, Won BW, Baumgardner K, et al. Literature review: robotic-assisted harvest of deep inferior epigastric flap for breast
reconstruction. Ann Plast Surg 2022;89:703-8. DOI
21. Innocenti M, Malzone G, Menichini G. First-in-human free flap tissue reconstruction using a dedicated microsurgical robotic platform.
Plast Reconstr Surg 2023;151:1078-82. DOI PubMed
22. Ghandourah HSH, Schols RM, Wolfs JAGN, Altaweel F, van Mulken TJM. Robotic microsurgery in plastic and reconstructive
surgery: a literature review. Surg Innov 2023;30:607-14. DOI PubMed PMC
23. Bhullar H, Hunter-Smith DJ, Rozen WM. Fat necrosis after DIEP flap breast reconstruction: a review of perfusion-related causes.
Aesthetic Plast Surg 2020;44:1454-61. DOI PubMed
24. Pruimboom T, van Kuijk SMJ, Qiu SS, et al. Optimizing indocyanine green fluorescence angiography in reconstructive flap surgery: a
systematic review and ex vivo experiments. Surg Innov 2020;27:103-19. DOI
25. Pruimboom T, Lindelauf AAMA, Felli E, et al. Perioperative hyperspectral imaging to assess mastectomy skin flap and DIEP flap
perfusion in immediate autologous breast reconstruction: a pilot study. Diagnostics 2022;12:184. DOI PubMed PMC
26. Proulx ST, Luciani P, Derzsi S, et al. Quantitative imaging of lymphatic function with liposomal indocyanine green. Cancer Res
2010;70:7053-62. DOI PubMed PMC
27. Prabhu AS, Carbonell A, Hope W, et al. Robotic inguinal vs transabdominal laparoscopic inguinal hernia repair: the RIVAL
randomized clinical trial. JAMA Surg 2020;155:380-7. DOI PubMed PMC
TM
®
28. Brassetti A, Ragusa A, Tedesco F, et al. Robotic surgery in urology: history from PROBOT to HUGO . Sensors 2023;23:7104.
DOI PubMed PMC
29. Aitzetmüller MM, Klietz ML, Dermietzel AF, Hirsch T, Kückelhaus M. Robotic-assisted microsurgery and its future in plastic
surgery. J Clin Med 2022;11:3378. DOI PubMed PMC
30. Roy N, Alessandro CJ, Ibelli TJ, et al. The expanding utility of robotic-assisted flap harvest in autologous breast reconstruction: a
systematic review. J Clin Med 2023;12:4951. DOI PubMed PMC
31. Daar DA, Anzai LM, Vranis NM, et al. Robotic deep inferior epigastric perforator flap harvest in breast reconstruction. Microsurgery
2022;42:319-25. DOI
32. Wittesaele W, Vandevoort M. Implementing the robotic deep inferior epigastric perforator flap in daily practice: a series of 10 cases. J
Plast Reconstr Aesthet Surg 2022;75:2577-83. DOI
33. Besmens IS, Politikou O, Giovanoli P, Calcagni M, Lindenblatt N. Robotic microsurgery in extremity reconstruction - experience with
a novel robotic system. Surg Innov 2024;31:42-7. DOI PubMed PMC
34. Wolfs JA, Schols RM, van Mulken TJ. Robotic microvascular and free flap surgery: overview of current robotic applications and
introduction of a dedicated robot for microsurgery. In: Nikkhah, D., Rawlins, J., Pafitanis, G. (eds) Core Techniques in Flap
Reconstructive Microsurgery. Springer, Cham; 2023.p.77-86.
35. Barbon C, Grünherz L, Uyulmaz S, Giovanoli P, Lindenblatt N. Exploring the learning curve of a new robotic microsurgical system
for microsurgery. JPRAS Open 2022;34:126-33. DOI PubMed PMC
36. van Mulken TJM, Qiu SS, Jonis Y, et al. First-in-human integrated use of a dedicated microsurgical robot with a 4K 3D exoscope: the
future of microsurgery. Life 2023;13:692. DOI PubMed PMC
37. Abdelrahman H, El-Menyar A, Peralta R, Al-Thani H. Application of indocyanine green in surgery: a review of current evidence and
implementation in trauma patients. World J Gastrointest Surg 2023;15:757-75. DOI PubMed PMC
38. Burnier P, Niddam J, Bosc R, Hersant B, Meningaud JP. Indocyanine green applications in plastic surgery: a review of the literature. J
Plast Reconstr Aesthet Surg 2017;70:814-27. DOI PubMed
39. Bigdeli AK, Gazyakan E, Schmidt VJ, et al. Indocyanine green fluorescence for free-flap perfusion imaging revisited: advanced
decision making by virtual perfusion reality in visionsense fusion imaging angiography. Surg Innov 2016;23:249-60. DOI