Page 63 - Read Online
P. 63
Page 358 vonderEmbse et al. Neuroimmunol Neuroinflammation 2020;7:345-59 I http://dx.doi.org/10.20517/2347-8659.2019.29
immunoreactivity. Glia 2008;56:1048-60.
9. Matcovitch-Natan O, Winter DR, Giladi A, Vargas Aguilar S, Spinrad A, et al. Microglia development follows a stepwise program to
regulate brain homeostasis. Science 2016;353:aad8670.
10. Williamson LL, Sholar PW, Mistry RS, Smith SH, Bilbo SD. Microglia and memory: modulation by early-life infection. J Neurosci
2011;31:15511-21.
11. Bilbo SD. Early-life infection is a vulnerability factor for aging-related glial alterations and cognitive decline. Neurobiol Learn Mem
2010;94:57-64.
12. Bland ST, Beckley JT, Young S, Tsang V, Watkins LR, et al. Enduring consequences of early-life infection on glial and neural cell genesis
within cognitive regions of the brain. Brain Behav Immun 2010;24:329-38.
13. Bilbo SD, Barrientos RM, Eads AS, Northcutt A, Watkins LR, et al. Early-life infection leads to altered BDNF and IL-1beta mRNA
expression in rat hippocampus following learning in adulthood. Brain Behav Immun 2008;22:451-5.
14. Thrash JC, Torbett BE, Carson MJ. Developmental regulation of TREM2 and DAP12 expression in the murine CNS: implications for
Nasu-Hakola disease. Neurochem Res 2009;34:38-45.
15. Colonna M, Wang Y. TREM2 variants: new keys to decipher Alzheimer disease pathogenesis. Nat Rev Neurosci 2016;17:201-7.
16. Painter MM, Atagi Y, Liu CC, Rademakers R, Xu H, et al. TREM2 in CNS homeostasis and neurodegenerative disease. Mol
Neurodegener 2015;10:43.
17. Guerreiro R, Wojtas A, Bras J, Carrasquillo M, Rogaeva E, et al; Alzheimer Genetic Analysis Group. TREM2 variants in Alzheimer’s
disease. N Engl J Med 2013;368:117-27.
18. Paolicelli RC, Bolasco G, Pagani F, Maggi L, Scianni M, et al. Synaptic pruning by microglia is necessary for normal brain development.
Science 2011;333:1456-8.
19. Wakselman S, Béchade C, Roumier A, Bernard D, Triller A, et al. Developmental neuronal death in hippocampus requires the microglial
CD11b integrin and DAP12 immunoreceptor. J Neurosci 2008;28:8138-43.
20. Roumier A, Pascual O, Béchade C, Wakselman S, Poncer JC, et al. Prenatal activation of microglia induces delayed impairment of
glutamatergic synaptic function. PLoS One 2008;3:e2595.
21. Roumier A, Béchade C, Poncer JC, Smalla KH, Tomasello E, et al. Impaired synaptic function in the microglial KARAP/DAP12-deficient
mouse. J Neurosci 2004;24:11421-8.
22. Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res
2009;19:92-105.
23. Gantier MP, McCoy CE, Rusinova I, Saulep D, Wang D, et al. Analysis of microRNA turnover in mammalian cells following Dicer1
ablation. Nucleic Acids Res 2011;39:5692-703.
24. Reid G, Kirschner MB, van Zandwijk N. Circulating microRNAs: association with disease and potential use as biomarkers. Crit Rev
Oncol Hematol 2011;80:193-208.
25. Bian S, Sun T. Functions of noncoding RNAs in neural development and neurological diseases. Mol Neurobiol 2011;44:359-73.
26. Guedes J, Cardoso AL, Pedroso de Lima MC. Involvement of microRNA in microglia-mediated immune response. Clin Dev Immunol
2013;2013:186872.
27. Soreq H, Wolf Y. NeurimmiRs: microRNAs in the neuroimmune interface. Trends Mol Med 2011;17:548-55.
28. Cheng LC, Pastrana E, Tavazoie M, Doetsch F. miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nat
Neurosci 2009;12:399-408.
29. Ponomarev ED, Veremeyko T, Barteneva N, Krichevsky AM, Weiner HL. MicroRNA-124 promotes microglia quiescence and suppresses
EAE by deactivating macrophages via the C/EBP-α-PU.1 pathway. Nat Med 2011;17:64-70.
30. Tan L, Yu JT, Hu N, Tan L. Non-coding RNAs in Alzheimer’s disease. Mol Neurobiol 2013;47:382-93.
31. Wang WX, Huang Q, Hu Y, Stromberg AJ, Nelson PT. Patterns of microRNA expression in normal and early Alzheimer’s disease human
temporal cortex: white matter versus gray matter. Acta Neuropathol 2011;121:193-205.
32. Gillet V, Hunting DJ, Takser L. Turing revisited: decoding the microRNA messages in brain extracellular vesicles for early detection of
neurodevelopmental disorders. Curr Environ Health Rep 2016;3:188-201.
33. Masoud AM, Bihaqi SW, Machan JT, Zawia NH, Renehan WE. Early-Life exposure to Lead (Pb) alters the expression of microRNA that
target proteins associated with Alzheimer’s disease. J Alzheimers Dis 2016;51:1257-64.
34. Nelson LH, Lenz KM. The immune system as a novel regulator of sex differences in brain and behavioral development. J Neurosci Res
2017;95:447-61.
35. Lenz KM, Nugent BM, Haliyur R, McCarthy MM. Microglia are essential to masculinization of brain and behavior. J Neurosci
2013;33:2761-72.
36. Schwarz JM, Sholar PW, Bilbo SD. Sex differences in microglial colonization of the developing rat brain. J Neurochem 2012;120:948-63.
37. Schwarz JM, Bilbo SD. Sex, glia, and development: interactions in health and disease. Horm Behav 2012;62:243-53.
38. Morgan CP, Bale TL. Sex differences in microRNA regulation of gene expression: no smoke, just miRs. Biol Sex Differ 2012;3:22.
39. Guo L, Zhang Q, Ma X, Wang J, Liang T. miRNA and mRNA expression analysis reveals potential sex-biased miRNA expression. Sci
Rep 2017;7:39812.
40. McCarthy MM, Nugent BM. At the frontier of epigenetics of brain sex differences. Front Behav Neurosci 2015;9:221.
41. Bhattacharjee S, Zhao Y, Dua P, Rogaev EI, Lukiw WJ. microRNA-34a-Mediated Down-regulation of the microglial-enriched triggering
receptor and phagocytosis-sensor TREM2 in age-related macular degeneration. PLoS One 2016;11:e0150211.
42. Rokavec M, Li H, Jiang L, Hermeking H. The p53/miR-34 axis in development and disease. J Mol Cell Biol 2014;6:214-30.