Page 67 - Read Online
P. 67

Victor et al. Neuroimmunol Neuroinflammation 2020;7:234-47  I  http://dx.doi.org/10.20517/2347-8659.2020.02             Page 245

                   microglia after controlled cortical impact injury in the rat. Glia 2001;35:167-79.
               60.  Wyatt-Johnson SK, Herr SA, Brewster AL. Status epilepticus triggers time-dependent alterations in microglia abundance and
                   morphological phenotypes in the hippocampus. Front Neurol 2017;8:700.
               61.  Tsirka SE, Gualandris A, Amaral DG, Strickland S. Excitotoxin-induced neuronal degeneration and seizure are mediated by tissue
                   plasminogen activator. Nature 1995;377:340-4.
               62.  Borges K, Gearing M, McDermott DL, Smith AB, Almonte AG, et al. Neuronal and glial pathological changes during epileptogenesis in
                   the mouse pilocarpine model. Exp Neurol 2003;182:21-34.
               63.  Benson MJ, Manzanero S, Borges K. Complex alterations in microglial M1/M2 markers during the development of epilepsy in two
                   mouse models. Epilepsia 2015;56:895-905.
               64.  Alyu F, Dikmen M. Inflammatory aspects of epileptogenesis: contribution of molecular inflammatory mechanisms. Acta Neuropsychiatr
                   2017;29:1-16.
               65.  Choi J, Koh S. Role of brain inflammation in epileptogenesis. Yonsei Med J 2008;49:1-18.
               66.  Politis M, Su P, Piccini P. Imaging of microglia in patients with neurodegenerative disorders. Front Pharmacol 2012;3:96.
               67.  Butler T, Li Y, Tsui W, Friedman D, Maoz A, et al. Transient and chronic seizure-induced inflammation in human focal epilepsy. Epilepsia
                   2016;57:e191-4.
               68.  Scorza CA, Marques MJG, Gomes da Silva S, Naffah-Mazzacoratti MDG, Scorza FA, et al. Status epilepticus does not induce acute brain
                   inflammatory response in the Amazon rodent Proechimys, an animal model resistant to epileptogenesis. Neurosci Lett 2018;668:169-73.
               69.  Viviani B, Bartesaghi S, Gardoni F, Vezzani A, Behrens MM, et al. Interleukin-1beta enhances NMDA receptor-mediated intracellular
                   calcium increase through activation of the Src family of kinases. J Neurosci 2003;23:8692-700.
               70.  Han T, Qin Y, Mou C, Wang M, Jiang M, et al. Seizure induced synaptic plasticity alteration in hippocampus is mediated by IL-1β
                   receptor through PI3K/Akt pathway. Am J Transl Res 2016;8:4499-509.
               71.  Roseti C, van Vliet EA, Cifelli P, Ruffolo G, Baayen JC, et al. GABAA currents are decreased by IL-1β in epileptogenic tissue of patients
                   with temporal lobe epilepsy: implications for ictogenesis. Neurobiol Dis 2015;82:311-20.
               72.  Maroso M, Balosso S, Ravizza T, Iori V, Wright CI, et al. Interleukin-1β biosynthesis inhibition reduces acute seizures and drug resistant
                   chronic epileptic activity in mice. Neurotherapeutics 2011;8:304-15.
               73.  Ravizza T, Vezzani A. Pharmacological targeting of brain inflammation in epilepsy: therapeutic perspectives from experimental and
                   clinical studies. Epilepsia Open 2018;3:133-42.
               74.  Dilena R, Mauri E, Aronica E, Bernasconi P, Bana C, et al. Therapeutic effect of Anakinra in the relapsing chronic phase of febrile
                   infection-related epilepsy syndrome. Epilepsia Open 2019;4:344-50.
               75.  Stellwagen D, Malenka RC. Synaptic scaling mediated by glial TNF-alpha. Nature 2006;440:1054-9.
               76.  Takeuchi H, Jin S, Wang J, Zhang G, Kawanokuchi J, et al. Tumor necrosis factor-alpha induces neurotoxicity via glutamate release from
                   hemichannels of activated microglia in an autocrine manner. J Biol Chem 2006;281:21362-8.
               77.  Kubota K, Inoue K, Hashimoto R, Kumamoto N, Kosuga A, et al. Tumor necrosis factor receptor-associated protein 1 regulates cell
                   adhesion and synaptic morphology via modulation of N-cadherin expression. J Neurochem 2009;110:496-508.
               78.  Stellwagen D, Beattie EC, Seo JY, Malenka RC. Differential regulation of AMPA receptor and GABA receptor trafficking by tumor
                   necrosis factor-alpha. J Neurosci 2005;25:3219-28.
               79.  Levin SG, Godukhin OV. Modulating Effect of Cytokines on Mechanisms of Synaptic Plasticity in the Brain. Biochemistry (Mosc)
                   2017;82:264-74.
               80.  Mirrione MM, Konomos DK, Gravanis I, Dewey SL, Aguzzi A, et al. Microglial ablation and lipopolysaccharide preconditioning affects
                   pilocarpine-induced seizures in mice. Neurobiol Dis 2010;39:85-97.
               81.  Torres L, Danver J, Ji K, Miyauchi JT, Chen D, et al. Dynamic microglial modulation of spatial learning and social behavior. Brain Behav
                   Immun 2016;55:6-16.
               82.  Elmore MR, Najafi AR, Koike MA, Dagher NN, Spangenberg EE, et al. Colony-stimulating factor 1 receptor signaling is necessary for
                   microglia viability, unmasking a microglia progenitor cell in the adult brain. Neuron 2014;82:380-97.
               83.  Homsi S, Piaggio T, Croci N, Noble F, Plotkine M, et al. Blockade of acute microglial activation by minocycline promotes
                   neuroprotection and reduces locomotor hyperactivity after closed head injury in mice: a twelve-week follow-up study. J Neurotrauma
                   2010;27:911-21.
               84.  Heo K, Cho YJ, Cho KJ, Kim HW, Kim HJ, et al. Minocycline inhibits caspase-dependent and -independent cell death pathways and is
                   neuroprotective against hippocampal damage after treatment with kainic acid in mice. Neurosci Lett 2006;398:195-200.
               85.  Wang N, Mi X, Gao B, Gu J, Wang W, et al. Minocycline inhibits brain inflammation and attenuates spontaneous recurrent seizures
                   following pilocarpine-induced status epilepticus. Neuroscience 2015;287:144-56.
               86.  Barker-Haliski ML, Heck TD, Dahle EJ, Vanegas F, Pruess TH, et al. Acute treatment with minocycline, but not valproic acid, improves
                   long-term behavioral outcomes in the Theiler’s virus model of temporal lobe epilepsy. Epilepsia 2016;57:1958-67.
               87.  Wolf BJ, Brackhan M, Bascunana P, Leiter I, Langer BLN, et al. TSPO PET identifies different anti-inflammatory minocycline treatment
                   response in two rodent models of epileptogenesis. Neurotherapeutics 2020;10.
               88.  Wang DD, Englot DJ, Garcia PA, Lawton MT, Young WL. Minocycline-and tetracycline-class antibiotics are protective against partial
                   seizures in vivo. Epilepsy Behav 2012;24:314-8.
               89.  Russmann V, Goc J, Boes K, Ongerth T, Salvamoser JD, et al. Minocycline fails to exert antiepileptogenic effects in a rat status
                   epilepticus model. Eur J Pharmacol 2016;771:29-39.
               90.  Dupuis N, Mazarati A, Desnous B, Chhor V, Fleiss B, et al. Pro-epileptogenic effects of viral-like inflammation in both mature and
   62   63   64   65   66   67   68   69   70   71   72