Page 66 - Read Online
P. 66
Page 244 Victor et al. Neuroimmunol Neuroinflammation 2020;7:234-47 I http://dx.doi.org/10.20517/2347-8659.2020.02
induced hippocampal mossy fiber outgrowth. Glia 2004;46:74-83.
29. Zhang Y, Kanaho Y, Frohman MA, Tsirka SE. Phospholipase D1-promoted release of tissue plasminogen activator facilitates neurite
outgrowth. J Neurosci 2005;25:1797-805.
30. Devinsky O, Vezzani A, Najjar S, De Lanerolle NC, Rogawski MA. Glia and epilepsy: excitability and inflammation. Trends Neurosci
2013;36:174-84.
31. Eyo UB, Murugan M, Wu LJ. Microglia-neuron communication in epilepsy. Glia 2017;65:5-18.
32. Robel S, Buckingham SC, Boni JL, Campbell SL, Danbolt NC, et al. Reactive astrogliosis causes the development of spontaneous
seizures. J Neurosci 2015;35:3330-45.
33. Takahashi Y, Yu Z, Sakai M, Tomita H. Linking activation of microglia and peripheral monocytic cells to the pathophysiology of
psychiatric disorders. Front Cell Neurosci 2016;10:144.
34. Obermeier B, Daneman R, Ransohoff RM. Development, maintenance and disruption of the blood-brain barrier. Nat Med 2013;19:1584-96.
35. Friedman A, Heinemann U. Role of blood–brain barrier injury in epileptogenesis. Epilepsia 2010;51:34-34.
36. Christensen J, Pedersen MG, Pedersen CB, Sidenius P, Olsen J, et al. Long-term risk of epilepsy after traumatic brain injury in children
and young adults: a population-based cohort study. Lancet 2009;373:1105-10.
37. Schoknecht K, Prager O, Vazana U, Kamintsky L, Harhausen D, et al. Monitoring stroke progression: in vivo imaging of cortical
perfusion, blood-brain barrier permeability and cellular damage in the rat photothrombosis model. J Cereb Blood Flow Metab
2014;34:1791-801.
38. Vezzani A, Maroso M, Balosso S, Sanchez MA, Bartfai T. IL-1 receptor/Toll-like receptor signaling in infection, inflammation, stress and
neurodegeneration couples hyperexcitability and seizures. Brain Behav Immun 2011;25:1281-9.
39. Aronica E, Bauer S, Bozzi Y, Caleo M, Dingledine R, et al. Neuroinflammatory targets and treatments for epilepsy validated in
experimental models. Epilepsia 2017;58 Suppl 3:27-38.
40. French JA, Gazzola DM. New generation antiepileptic drugs: what do they offer in terms of improved tolerability and safety?. Ther Adv
Drug Saf 2011;2:141-58.
41. Barker-Haliski M, Steve White H. Validated animal models for antiseizure drug (ASD) discovery: advantages and potential pitfalls in
ASD screening. Neuropharmacology 2020;167:107750.
42. Löscher W. Animal models of seizures and epilepsy: past, present, and future role for the discovery of antiseizure drugs. Neurochem Res
2017;42:1873-88.
43. Löscher W, Schmidt D. Modern antiepileptic drug development has failed to deliver: ways out of the current dilemma. Epilepsia
2011;52:657-78.
44. Welzel L, Schidlitzki A, Twele F, Anjum M, Löscher W. A face-to-face comparison of the intra-amygdala and intrahippocampal kainate
mouse models of mesial temporal lobe epilepsy and their utility for testing novel therapies. Epilepsia 2020;61:157-70.
45. Simonato M, Brooks-Kayal AR, Engel J Jr, Galanopoulou AS, Jensen FE, et al. The challenge and promise of anti-epileptic therapy
development in animal models. Lancet Neurol 2014;13:949-60.
46. Kandratavicius L, Balista PA, Lopes-Aguiar C, Ruggiero RN, Umeoka EH, et al. Animal models of epilepsy: use and limitations.
Neuropsychiatr Dis Treat 2014;10:1693-705.
47. Ben-Ari Y. Limbic seizure and brain damage produced by kainic acid: mechanisms and relevance to human temporal lobe epilepsy.
Neuroscience 1985;14:375-403.
48. Turski L, Ikonomidou C, Turski WA, Bortolotto ZA, Cavalheiro EA. Review: cholinergic mechanisms and epileptogenesis. The seizures
induced by pilocarpine: a novel experimental model of intractable epilepsy. Synapse 1989;3:154-71.
49. Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science
2005;308:1314-8.
50. Cunningham CL, Martínez-Cerdeño V, Noctor SC. Microglia regulate the number of neural precursor cells in the developing cerebral
cortex. J Neurosci 2013;33:4216-33.
51. Sierra A, Encinas JM, Deudero JJ, Chancey JH, Enikolopov G, et al. Microglia shape adult hippocampal neurogenesis through apoptosis-
coupled phagocytosis. Cell Stem Cell 2010;7:483-5.
52. Ueno M, Fujita Y, Tanaka T, Nakamura Y, Kikuta J, et al. Layer V cortical neurons require microglial support for survival during postnatal
development. Nat Neurosci 2013;16:543-551
53. Peri F, Nüsslein-Volhard C. Live imaging of neuronal degradation by microglia reveals a role for v0-ATPase a1 in phagosomal fusion in
vivo. Cell 2008;133:916-27.
54. Squarzoni P, Oller G, Hoeffel G, Pont-Lezica L, Rostaing P, et al. Microglia modulate wiring of the embryonic forebrain. Cell Rep
2014;8:1271-9.
55. Paolicelli RC, Bolasco G, Pagani F, Maggi L, Scianni M, et al. Synaptic pruning by microglia is necessary for normal brain development.
Science. 2011;333:1456-8.
56. Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, et al. Microglia sculpt postnatal neural circuits in an activity and
complement-dependent manner. Neuron 2012;74:691-705.
57. Miyamoto A, Wake H, Ishikawa AW, Eto K, Shibata K, et al. Microglia contact induces synapse formation in developing somatosensory
cortex. Nat Commun 2016;7:12540.
58. Augusto-Oliveira M, Arrifano GP, Lopes-Araújo A, Santos-Sacramento L, Takeda PY, et al. What do microglia really do in healthy adult
brain?. Cells 2019;8:1293.
59. van Landeghem FK, Stover JF, Bechmann I, Bruck W, Unterberg A, et al. Early expression of glutamate transporter proteins in ramified