Page 69 - Read Online
P. 69

Victor et al. Neuroimmunol Neuroinflammation 2020;7:234-47  I  http://dx.doi.org/10.20517/2347-8659.2020.02            Page 247

                   response to exercise and aging. J Neurosci 2012;32:6435-43.
               126. Bolos M, Perea JR, Terreros-Roncal J, Pallas-Bazarra N, Jurado-Arjona J, et al. Absence of microglial CX3CR1 impairs the synaptic
                   integration of adult-born hippocampal granule neurons. Brain Behav Immun 2018;68:76-89.
               127. Bachstetter AD, Morganti JM, Jernberg J, Schlunk A, Mitchell SH, et al. Fractalkine and CX 3 CR1 regulate hippocampal neurogenesis
                   in adult and aged rats. Neurobiol Aging 2011;32:2030-44.
               128. Maggi L, Scianni M, Branchi I, D’Andrea I, Lauro C, et al. CX(3)CR1 deficiency alters hippocampal-dependent plasticity phenomena
                   blunting the effects of enriched environment. Front Cell Neurosci 2011;5:22.
               129. Parent JM, Yu TW, Leibowitz RT, Geschwind DH, Sloviter RS, et al. Dentate granule cell neurogenesis is increased by seizures and
                   contributes to aberrant network reorganization in the adult rat hippocampus. J Neurosci 1997;17:3727-38.
               130. Jessberger S, Römer B, Babu H, Kempermann G. Seizures induce proliferation and dispersion of doublecortin-positive hippocampal
                   progenitor cells. Exp Neurol 2005;196:342-51.
               131. Jessberger S, Zhao C, Toni N, Clemenson GD Jr, Li Y, et al. Seizure-associated, aberrant neurogenesis in adult rats characterized with
                   retrovirus-mediated cell labeling. J Neurosci 2007;27:9400-7.
               132. Kron MM, Zhang H, Parent JM. The developmental stage of dentate granule cells dictates their contribution to seizure-induced plasticity.
                   J Neurosci 2010;30:2051-59.
               133. Scharfman HE, Goodman JH, Sollas AL. Granule-like neurons at the hilar/CA3 border after status epilepticus and their synchrony with
                   area CA3 pyramidal cells: functional implications of seizure-induced neurogenesis. J Neurosci 2000;20:6144-58.
               134. Zhan RZ, Timofeeva O, Nadler JV. High ratio of synaptic excitation to synaptic inhibition in hilar ectopic granule cells of pilocarpine-
                   treated rats. J Neurophysiol 2010;104:3293-304.
               135. Pun RY, Rolle IJ, Lasarge CL, Hosford BE, Rosen JM, et al. Excessive activation of mTOR in postnatally generated granule cells is
                   sufficient to cause epilepsy. Neuron 2012;75:1022-34.
               136. Luo C, Koyama R, Ikegaya Y. Microglia engulf viable newborn cells in the epileptic dentate gyrus. Glia 2016;64:1508-17.
               137. Abiega O, Beccari S, Diaz-Aparicio I, Nadjar A, Laye S, et al. Neuronal hyperactivity disturbs ATP microgradients, impairs
                   microglial motility, and reduces phagocytic receptor expression triggering apoptosis/microglial phagocytosis uncoupling. PLoS Biol
                   2016;14:e1002466.
               138. Luo C, Ikegaya Y, Koyama R. Microglia and neurogenesis in the epileptic dentate gyrus. Neurogenesis (Austin) 2016;3:e1235525.
               139. Kyle J, Wu M, Gourzi S, Tsirka SE. Proliferation and differentiation in the adult subventricular zone are not affected by CSF1R inhibition.
                   Front Cell Neurosci 2019;13:97.
               140. Ribeiro Xavier AL, Kress BT, Goldman SA, Lacerda de Menezes JR, Nedergaard M. A distinct population of microglia supports adult
                   neurogenesis in the subventricular zone. J Neurosci 2015;35:11848-61.
               141. Gibbons HM, Smith AM, Teoh HH, Bergin PM, Mee EW, et al. Valproic acid induces microglial dysfunction, not apoptosis, in human
                   glial cultures. Neurobiol Dis 2011;41:96-103.
               142. Su W, Xie M, Li Y, Gong X, Li J. Topiramate reverses physiological and behavioral alterations by postoperative cognitive dysfunction in
                   rat model through inhibiting TNF signaling pathway. Neuromolecular Med 2020;22:227-38.
               143. Itoh K, Taniguchi R, Matsuo T, Oguro A, Vogel CF, et al. Suppressive effects of levetiracetam on neuroinflammation and phagocytic
                   microglia: A comparative study of levetiracetam, valproate and carbamazepine. Neurosci Lett 2019;708:134363.
               144. Andrzejczak D, Woldan-Tambor A, Bednarska K, Zawilska JB. The effects of topiramate on lipopolysaccharide (LPS)-induced
                   proinflammatory cytokine release from primary rat microglial cell cultures. Epilepsy Res 2016;127:352-7.
               145. Shima T, Sakuma H, Suzuki T, Kohyama K, Matsuoka T, et al. Effects of antiepileptic drugs on microglial properties. Epilepsy & Seizure
                   2018;10:22-32.
               146. Itoh K, Ishihara Y, Komori R, Nochi H, Taniguchi R, et al. Levetiracetam treatment influences blood-brain barrier failure associated with
                   angiogenesis and inflammatory responses in the acute phase of epileptogenesis in post-status epilepticus mice. Brain Res 2016;1652:1-13.
               147. Lempel AA, Coll L, Schinder AF, Uchitel OD, Piriz J. Chronic pregabalin treatment decreases excitability of dentate gyrus and
                   accelerates maturation of adult-born granule cells. J Neurochem 2017;140:257-67.
               148. Kondziella D, Strandberg J, Lindquist C, Asztely F. Lamotrigine increases the number of BrdU-labeled cells in the rat hippocampus.
                   Neuroreport 2011;22:97-100.
               149. Shi XY, Wang JW, Cui H, Li BM, Lei GF, et al. Effects of antiepileptic drugs on mRNA levels of BDNF and NT-3 and cell neogenesis in
                   the developing rat brain. Brain Dev 2010;32:229-35.
   64   65   66   67   68   69   70   71   72   73   74