Page 54 - Read Online
P. 54

Page 232              Reyes et al. Neuroimmunol Neuroinflammation 2020;7:215-33  I  http://dx.doi.org/10.20517/2347-8659.2020.13

               119.  Aguilar EC, Leonel AJ, Teixeira LG, Silva AR, Silva JF, et al. Butyrate impairs atherogenesis by reducing plaque inflammation and
                   vulnerability and decreasing NFkappaB activation. Nutr Metab Cardiovasc Dis 2014;24:606-13.
               120. de la Cuesta-Zuluaga J, Mueller NT, Alvarez-Quintero R, Velasquez-Mejia EP, Sierra JA, et al. Higher fecal short-chain fatty acid levels
                   are associated with gut microbiome dysbiosis, obesity, hypertension and cardiometabolic disease risk factors. Nutrients 2018;11.
               121. Elamin EE, Masclee AA, Dekker J, Pieters HJ, Jonkers DM. Short-chain fatty acids activate AMP-activated protein kinase and
                   ameliorate ethanol-induced intestinal barrier dysfunction in Caco-2 cell monolayers. J Nutr 2013;143:1872-81.
               122. Bourre JM, Bornhofen JH, Araoz CA, Daudu O, Baumann NA. Pelizaeus--Merzbacher disease: brain lipid and fatty acid composition. J
                   Neurochem 1978;30:719-27.
               123. Unger MM, Spiegel J, Dillmann KU, Grundmann D, Philippeit H, et al. Short chain fatty acids and gut microbiota differ between
                   patients with Parkinson’s disease and age-matched controls. Parkinsonism Relat Disord 2016;32:66-72.
               124. Ho L, Ono K, Tsuji M, Mazzola P, Singh R, et al. Protective roles of intestinal microbiota derived short chain fatty acids in Alzheimer’s
                   disease-type beta-amyloid neuropathological mechanisms. Expert Rev Neurother 2018;18:83-90.
               125. Mucida D, Park Y, Kim G, Turovskaya O, Scott I, et al. Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid.
                   Science 2007;317:256-60.
               126. Kurita-Ochiai T, Hashizume T, Yonezawa H, Ochiai K, Yamamoto M. Characterization of the effects of butyric acid on cell proliferation,
                   cell cycle distribution and apoptosis. FEMS Immunol Med Microbiol 2006;47:67-74.
               127. Proctor LM, Creasy HH, Fettweis JM, Lloyd-Price J, Mahurkar A, et al. The integrative human microbiome project. Nature
                   2019;569:641-8.
               128. Human Microbiome Project (HMP) Consortium. Structure, function and diversity of the healthy human microbiome. Nature
                   2012;486:207-14.
               129. Theriot CM, Koenigsknecht MJ, Carlson PE Jr, Hatton GE, Nelson AM, et al. Antibiotic-induced shifts in the mouse gut microbiome
                   and metabolome increase susceptibility to Clostridium difficile infection. Nat Commun 2014;5:3114.
               130. Sekirov I, Tam NM, Jogova M, Robertson ML, Li Y, et al. Antibiotic-induced perturbations of the intestinal microbiota alter host
                   susceptibility to enteric infection. Infect Immun 2008;76:4726-36.
               131. Hong KS, Kim JS. Rifaximin for the treatment of acute infectious diarrhea. Therap Adv Gastroenterol 2011;4:227-35.
               132. Iorio N, Malik Z, Schey R. Profile of rifaximin and its potential in the treatment of irritable bowel syndrome. Clin Exp Gastroenterol
                   2015;8:159-67.
               133. Ponziani FR, Zocco MA, D’Aversa F, Pompili M, Gasbarrini A. Eubiotic properties of rifaximin: disruption of the traditional concepts
                   in gut microbiota modulation. World J Gastroenterol 2017;23:4491-9.
               134. Maccaferri S, Vitali B, Klinder A, Kolida S, Ndagijimana M, et al. Rifaximin modulates the colonic microbiota of patients with Crohn’s
                   disease: an in vitro approach using a continuous culture colonic model system. J Antimicrob Chemother 2010;65:2556-65.
               135. Tan J, McKenzie C, Potamitis M, Thorburn AN, Mackay CR, et al. The role of short-chain fatty acids in health and disease. Adv
                   Immunol 2014;121:91-119.
               136. Yang L, Liu B, Zheng J, Huang J, Zhao Q, et al. Rifaximin alters intestinal microbiota and prevents progression of ankylosing
                   spondylitis in mice. Front Cell Infect Microbiol 2019;9:44.
               137. Xu D, Gao J, Gillilland M, Wu X, Song I, et al. Rifaximin alters intestinal bacteria and prevents stress-induced gut inflammation and
                   visceral hyperalgesia in rats. Gastroenterology 2014;146:484-96.e4.
               138. Cash WJ, McConville P, McDermott E, McCormick PA, Callender ME, et al. Current concepts in the assessment and treatment of
                   hepatic encephalopathy. QJM 2010;103:9-16.
               139. Coronel-Castillo CE, Contreras-Carmona J, Frati-Munari AC, Uribe M, Mendez-Sanchez N. Efficacy of rifaximin in the different
                   clinical scenarios of hepatic encephalopathy. Rev Gastroenterol Mex 2020;85:56-68.
               140. Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res 2011;21:381-95.
               141. Clayton AL, Hazzalin CA, Mahadevan LC. Enhanced histone acetylation and transcription: a dynamic perspective. Mol Cell
                   2006;23:289-96.
               142. Ghiaghi M, Forouzesh F, Rahimi H. Effect of sodium butyrate on LHX1 mRNA expression as a transcription factor of HDAC8 in
                   human colorectal cancer cell lines. Avicenna J Med Biotechnol 2019;11:317-24.
               143. Nakagawa H, Sasagawa S, Itoh K. Sodium butyrate induces senescence and inhibits the invasiveness of glioblastoma cells. Oncol Lett
                   2018;15:1495-502.
               144. Arnoldussen IAC, Wiesmann M, Pelgrim CE, Wielemaker EM, van Duyvenvoorde W, et al. Butyrate restores HFD-induced adaptations
                   in brain function and metabolism in mid-adult obese mice. Int J Obes (Lond) 2017;41:935-44.
               145. Mannucci E, Ognibene A, Cremasco F, Bardini G, Mencucci A, et al. Effect of metformin on glucagon-like peptide 1 (GLP-1) and
                   leptin levels in obese nondiabetic subjects. Diabetes Care 2001;24:489-94.
               146. Paisán-Ruı ́ z C, Jain S, Evans EW, Gilks WP, Simón J, et al. Cloning of the gene containing mutations that cause PARK8-linked
                   Parkinson’s disease. Neuron 2004;44:595-600.
               147. van Engeland M, Derks S, Smits KM, Meijer GA, Herman JG. Colorectal cancer epigenetics: complex simplicity. J Clin Oncol
                   2011;29:1382-91.
               148. Halliday GM, Holton JL, Revesz T, Dickson DW. Neuropathology underlying clinical variability in patients with synucleinopathies.
                   Acta Neuropathol 2011;122:187-204.
               149. Braak H, de Vos RA, Bohl J, Del Tredici K. Gastric alpha-synuclein immunoreactive inclusions in Meissner’s and Auerbach’s plexuses
                   in cases staged for Parkinson’s disease-related brain pathology. Neurosci Lett 2006;396:67-72.
               150. Holmqvist S, Chutna O, Bousset L, Aldrin-Kirk P, Li W, et al. Direct evidence of Parkinson pathology spread from the gastrointestinal
                   tract to the brain in rats. Acta Neuropathol 2014;128:805-20.
               151. Sander C, Modes F, Schlake HP, Eling P, Hildebrandt H. Capturing fatigue parameters: the impact of vagal processing in multiple
   49   50   51   52   53   54   55   56   57   58   59