Page 51 - Read Online
P. 51

Reyes et al. Neuroimmunol Neuroinflammation 2020;7:215-33  I  http://dx.doi.org/10.20517/2347-8659.2020.13           Page 229

                   2018;172:500-16.e16.
               21.  Hensch TK. Critical period regulation. Annu Rev Neurosci 2004;27:549-79.
               22.  Knudsen EI. Sensitive periods in the development of the brain and behavior. J Cogn Neurosci 2004;16:1412-25.
               23.  Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, et al. Human gut microbiome viewed across age and geography.
                   Nature 2012;486:222-7.
               24.  Blanchard EB, Scharff L, Schwarz SP, Suls JM, Barlow DH. The role of anxiety and depression in the irritable bowel syndrome. Behav
                   Res Ther 1990;28:401-5.
               25.  Yan F, Chen Y, Li M, Wang Y, Zhang W, et al. Gastrointestinal nervous system alpha-synuclein as a potential biomarker of Parkinson
                   disease. Medicine (Baltimore) 2018;97:e11337.
               26.  D’Mello C, Ronaghan N, Zaheer R, Dicay M, Le T, et al. Probiotics improve inflammation-associated sickness behavior by altering
                   communication between the peripheral immune system and the brain. J Neurosci 2015;35:10821-30.
               27.  Luczynski P, McVey Neufeld KA, Oriach CS, Clarke G, Dinan TG, et al. Growing up in a bubble: using germ-free animals to assess the
                   influence of the gut microbiota on brain and behavior. Int J Neuropsychopharmacol 2016;19.
               28.  Lundberg R, Toft MF, August B, Hansen AK, Hansen CHF. Antibiotic-treated versus germ-free rodents for microbiota transplantation
                   studies. Gut Microbes 2016;7:68-74.
               29.  Li N, Wang Q, Wang Y, Sun A, Lin Y, et al. Fecal microbiota transplantation from chronic unpredictable mild stress mice donors affects
                   anxiety-like and depression-like behavior in recipient mice via the gut microbiota-inflammation-brain axis. Stress 2019;22:592-602.
               30.  Kelly JR, Borre Y, O’Brien C, Patterson E, El Aidy S, et al. Transferring the blues: Depression-associated gut microbiota induces
                   neurobehavioural changes in the rat. J Psychiatr Res 2016;82:109-18.
               31.  Hui W, Li T, Liu W, Zhou C, Gao F. Fecal microbiota transplantation for treatment of recurrent C. Difficile infection: an updated
                   randomized controlled trial meta-analysis. PloS One 2019;14:e0210016.
               32.  Kang DW, Adams JB, Gregory AC, Borody T, Chittick L, et al. Microbiota transfer therapy alters gut ecosystem and improves
                   gastrointestinal and autism symptoms: an open-label study. Microbiome 2017;5:10.
               33.  Berthoud HR. Vagal and hormonal gut-brain communication: from satiation to satisfaction. Neurogastroenterol Motil 2008;20:64-72.
               34.  Thaiss CA, Zmora N, Levy M, Elinav E. The microbiome and innate immunity. Nature 2016;535:65-74.
               35.  Rescigno M. Gut commensal flora: tolerance and homeostasis. F1000 Biol Rep 2009;1:9.
               36.  McClure R, Massari P. TLR-dependent human mucosal epithelial cell responses to microbial pathogens. Front Immunol 2014;5:386.
               37.  Spiljar M, Merkler D, Trajkovski M. The immune system bridges the gut microbiota with systemic energy homeostasis: focus on TLRs,
                   mucosal barrier, and SCFAs. Front Immunol 2017;8:1353.
               38.  Rakoff-Nahoum S, Pglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R. Recognition of comensal microflora by toll-like receptors in
                   required for intestinal homeostasis. Cell 2004;118:229-41.
               39.  Lee J, Gonzales-Navajas JM, Raz E. The “polarizing-tolerizing” mechanism of intestinal epithelium: its relevance to colonic
                   homeostasis. Semin Immunopathol 2008;30:3-9.
               40.  Lazar V, Ditu LM, Pircalabioru GG, Gheorghe I, Curutiu C, et al. Aspects of gut microbiota and immune system interactions in
                   infectious diseases, immunopathology, and cancer. Front Immunol 2018;9:1830.
               41.  Carson MJ, Doose JM, Melchior B, Schmid CD, Ploix CC. CNS immune privilege: hiding in plain sight. Immunol Rev 2006;213:48-65.
               42.  Mukherjee S, Hooper Lora V. Antimicrobial defense of the intestine. Immunity 2015;42:28-39.
               43.  Taur Y, Pamer EG. The intestinal microbiota and susceptibility to infection in immunocompromised patients. Curr Opin Infect Dis
                   2013;26:332-7.
               44.  Croswell A, Amir E, Teggatz P, Barman M, Salzman NH. Prolonged impact of antibiotics on intestinal microbial ecology and
                   susceptibility to enteric Salmonella infection. Infect Immun 2009;77:2741-53.
               45.  Baraona E, Julkunen R, Tannenbaum L, Lieber CS. Role of intestinal bacterial overgrowth in ethanol production and metabolism in rats.
                   Gastroenterology 1986;90:103-10.
               46.  Wieczorek M, Swiergiel AH, Pournajafi-Nazarloo H, Dunn AJ. Physiological and behavioral responses to interleukin-1β and LPS in
                   vagotomized mice. Physiol Behav 2005;85:500-11.
               47.  Blednov YA, Benavidez JM, Geil C, Perra S, Morikawa H, et al. Activation of inflammatory signaling by lipopolysaccharide produces a
                   prolonged increase of voluntary alcohol intake in mice. Brain Beh Immun 2011;25:S92-105.
               48.  Fields CT, Chassaing B, Castillo-Ruiz A, Osan R, Gewirtz AT, et al. Effects of gut-derived endotoxin on anxiety-like and repetitive
                   behaviors in male and female mice. Biol Sex Differ 2018;9:7.
               49.  Chastre A, Belanger M, Nguyen BN, Butterworth RF. Lipopolysaccharide precipitates hepatic encephalopathy and increases blood-
                   brain barrier permeability in mice with acute liver failure. Liver Int 2014;34:353-61.
               50.  Biesmans S, Meert TF, Bouwknecht JA, Acton PD, Davoodi N, et al. Systemic immune activation leads to neuroinflammation and
                   sickness behavior in mice. Mediators Inflamm 2013;2013:271359.
               51.  Hoogland ICM, Westhoff D, Engelen-Lee JY, Melief J, Valls Serón M, et al. Microglial activation after systemic stimulation with
                   lipopolysaccharide and Escherichia coli. Front Cell Neurosci 2018;12:110.
               52.  Hines DJ, Choi HB, Hines RM, Phillips AG, MacVicar BA. Prevention of LPS-induced microglia activation, cytokine production and
                   sickness behavior with TLR4 receptor interfering peptides. PloS One 2013;8:e60388.
               53.  Zhao Y, Cong L, Jaber V, Lukiw WJ. Microbiome-derived lipopolysaccharide enriched in the perinuclear region of Alzheimer’s disease
                   brain. Front Immunol 2017;8:1064.
               54.  Zhao Y, Cong L, Lukiw WJ. Lipopolysaccharide (LPS) accumulates in neocortical neurons of Alzheimer’s disease (AD) brain and
                   impairs transcription in human neuronal-glial primary co-cultures. Front Aging Neurosci 2017;9:407.
               55.  Reimann F, Habib AM, Tolhurst G, Parker HE, Rogers GJ, et al. Glucose sensing in L cells: a primary cell study. Cell Metab
                   2008;8:532-9.
   46   47   48   49   50   51   52   53   54   55   56