Page 53 - Read Online
P. 53

Reyes et al. Neuroimmunol Neuroinflammation 2020;7:215-33  I  http://dx.doi.org/10.20517/2347-8659.2020.13            Page 231

               87.  Luo Y, Zeng B, Zeng L, Du X, Li B, et al. Gut microbiota regulates mouse behaviors through glucocorticoid receptor pathway genes in
                   the hippocampus. Transl Psychiatry 2018;8:187.
               88.  van Olst L, Bielefeld P, Fitzsimons CP, de Vries HE, Schouten M. Glucocorticoid-mediated modulation of morphological changes
                   associated with aging in microglia. Aging Cell 2018;17:e12790.
               89.  Benedusi V, Meda C, Della Torre S, Monteleone G, Vegeto E, et al. A lack of ovarian function increases neuroinflammation in aged
                   mice. Endocrinology 2012;153:2777-88.
               90.  Walker DJ, Spencer KA. Glucocorticoid programming of neuroimmune function. Gen Comp Endocrinol 2018;256:80-8.
               91.  Miller AH, Spencer RL, Pearce BD, Pisell TL, Azrieli Y, et al. Glucocorticoid receptors are differentially expressed in the cells and
                   tissues of the immune system. Cell Immunol 1998;186:45-54.
               92.  Sun SL, Li TJ, Yang PY, Qiu Y, Rui YC. Modulation of signal transducers and activators of transcription (STAT) factor pathways during
                   focal cerebral ischaemia: a gene expression array study in rat hippocampus after middle cerebral artery occlusion. Clin Exp Pharmacol
                   Physiol 2007;34:1097-101.
               93.  Natarajan C, Sriram S, Muthian G, Bright JJ. Signaling through JAK2-STAT5 pathway is essential for IL-3-induced activation of
                   microglia. Glia 2004;45:188-96.
               94.  Ock J, Lee H, Kim S, Lee WH, Choi DK, et al. Induction of microglial apoptosis by corticotropin-releasing hormone. J Neurochem
                   2006;98:962-72.
               95.  Yang Y, Hahm E, Kim Y, Kang J, Lee W, et al. Regulation of IL-18 expression by CRH in mouse microglial cells. Immunol Lett
                   2005;98:291-6.
               96.  Lim HY, Muller N, Herold MJ, van den Brandt J, Reichardt HM. Glucocorticoids exert opposing effects on macrophage function
                   dependent on their concentration. Immunology 2007;122:47-53.
               97.  Sierra A, Gottfried-Blackmore A, Milner TA, McEwen BS, Bulloch K. Steroid hormone receptor expression and function in microglia.
                   Glia 2008;56:659-74.
               98.  Sugama S, Fujita M, Hashimoto M, Conti B. Stress induced morphological microglial activation in the rodent brain: involvement of
                   interleukin-18. Neuroscience 2007;146:1388-99.
               99.  Sugama S, Takenouchi T, Fujita M, Kitani H, Conti B, et al. Corticosteroids limit microglial activation occurring during acute stress.
                   Neuroscience 2013;232:13-20.
               100. Tynan RJ, Naicker S, Hinwood M, Nalivaiko E, Buller KM, et al. Chronic stress alters the density and morphology of microglia in a
                   subset of stress-responsive brain regions. Brain Behav Immun 2010;24:1058-68.
               101. Frank MG, Miguel ZD, Watkins LR, Maier SF. Prior exposure to glucocorticoids sensitizes the neuroinflammatory and peripheral
                   inflammatory responses to E. coli lipopolysaccharide. Brain Behav Immun 2010;24:19-30.
               102. Vegeto E, Belcredito S, Ghisletti S, Meda C, Etteri S, et al. The endogenous estrogen status regulates microglia reactivity in animal
                   models of neuroinflammation. Endocrinology 2006;147:2263-72.
               103. Sarvari M, Hrabovszky E, Kallo I, Solymosi N, Liko I, et al. Menopause leads to elevated expression of macrophage-associated genes
                   in the aging frontal cortex: rat and human studies identify strikingly similar changes. J Neuroinflammation 2012;9:264.
               104. Orgaard A, Jepsen SL, Holst JJ. Short-chain fatty acids and regulation of pancreatic endocrine secretion in mice. Islets 2019;11:103-11.
               105. Kumar A, Alrefai WA, Borthakur A, Dudeja PK. Lactobacillus acidophilus counteracts enteropathogenic E. coli-induced inhibition of
                   butyrate uptake in intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 2015;309:G602-7.
               106. Ferrante RJ, Kubilus JK, Lee J, Ryu H, Beesen A, et al. Histone deacetylase inhibition by sodium butyrate chemotherapy ameliorates
                   the neurodegenerative phenotype in Huntington’s disease mice. J Neurosci 2003;23:9418-27.
               107. Govindarajan N, Agis-Balboa RC, Walter J, Sananbenesi F, Fischer A. Sodium butyrate improves memory function in an Alzheimer’s
                   disease mouse model when administered at an advanced stage of disease progression. J Alzheimers Dis 2011;26:187-97.
               108. Silva LG, Ferguson BS, Avila AS, Faciola AP. Sodium propionate and sodium butyrate effects on histone deacetylase (HDAC) activity,
                   histone acetylation, and inflammatory gene expression in bovine mammary epithelial cells. J Anim Sci 2018;96:5244-52.
               109. Walsh ME, Bhattacharya A, Sataranatarajan K, Qaisar R, Sloane L, et al. The histone deacetylase inhibitor butyrate improves
                   metabolism and reduces muscle atrophy during aging. Aging Cell 2015;14:957-70.
               110.  Kannan V, Brouwer N, Hanisch UK, Regen T, Eggen BJL, et al. Histone deacetylase inhibitors suppress immune activation in primary
                   mouse microglia. J Neurosci Res 2013;91:1133-42.
               111.  Ryu H, Lee J, Olofsson BA, Mwidau A, Dedeoglu A, et al. Histone deacetylase inhibitors prevent oxidative neuronal death independent
                   of expanded polyglutamine repeats via an Sp1-dependent pathway. Proc Natl Acad Sci U S A 2003;100:4281-6.
               112.  Yin F, Sancheti H, Patil I, Cadenas E. Energy metabolism and inflammation in brain aging and Alzheimer’s disease. Free Radic Biol
                   Med 2016;100:108-22.
               113.  Kimura I, Inoue D, Maeda T, Hara T, Ichimura A, et al. Short-chain fatty acids and ketones directly regulate sympathetic nervous system
                   via G protein-coupled receptor 41 (GPR41). Proc Natl Acad Sci U S A 2011;108:8030-5.
               114.  Canfora EE, Jocken JW, Blaak EE. Short-chain fatty acids in control of body weight and insulin sensitivity. Nat Rev Endocrinol
                   2015;11:577-91.
               115.  Layden BT, Angueira AR, Brodsky M, Durai V, Lowe WL Jr. Short chain fatty acids and their receptors: new metabolic targets. Transl
                   Res 2013;161:131-40.
               116.  Guilloteau P, Martin L, Eeckhaut V, Ducatelle R, Zabielski R, et al. From the gut to the peripheral tissues: the multiple effects of
                   butyrate. Nutr Res Rev 2010;23:366-84.
               117.  Hamer HM, Jonkers D, Venema K, Vanhoutvin S, Troost FJ, et al. Review article: the role of butyrate on colonic function. Aliment
                   Pharmacol Ther 2008;27:104-19.
               118.  Sun J, Xu J, Yang B, Chen K, Kong Y, et al. Effect of clostridium butyricum against microglia-mediated neuroinflammation in
                   Alzheimer’s disease via regulating gut microbiota and metabolites butyrate. Mol Nutr Food Res 2019;64:e1900636.
   48   49   50   51   52   53   54   55   56   57   58