Page 50 - Read Online
P. 50
Page 228 Reyes et al. Neuroimmunol Neuroinflammation 2020;7:215-33 I http://dx.doi.org/10.20517/2347-8659.2020.13
Contributed to different sections of the review and all participated in editing and finalizing the manuscript:
Reyes REN, Zhang Z, Gao L, Asatryan L
Availability of data and materials
Not applicable.
Financial support and sponsorship
Rose Hills Foundation Innovator Grant, USC School of Pharmacy and USC Good Neighbors.
Conflicts of interest
All authors declared that there are no conflicts of interest.
Ethical approval and consent to participate
Not applicable.
Consent for publication
Not applicable.
Copyright
© The Author(s) 2020.
REFERENCES
1. Aloisi F. Immune function of microglia. Glia 2001;36:165-79.
2. Lively S, Schlichter LC. Microglia responses to pro-inflammatory stimuli (LPS, IFNγ + TNFα) and reprogramming by resolving
cytokines (IL-4, IL-10). Front Cell Neurosci 2018;12:215.
3. Franco R, Fernandez-Suarez D. Alternatively activated microglia and macrophages in the central nervous system. Prog Neurobiol
2015;131:65-86.
4. Krause DL, Muller N. Neuroinflammation, microglia and implications for anti-inflammatory treatment in Alzheimer’s disease. Int J
Alzheimers Dis 2010;2010:732806.
5. Hunot S, Hirsch EC. Neuroinflammatory processes in Parkinson’s disease. Ann Neurol 2003;53:S58-60.
6. Harry GJ. Microglia during development and aging. Pharmacol Ther 2013;139:313-26.
7. Erny D, Hrabě de Angelis AL, Jaitin D, Wieghofer P, Staszewski O, et al. Host microbiota constantly control maturation and function of
microglia in the CNS. Nat Neurosci 2015;18:965-77.
8. Golubeva AV, Joyce SA, Moloney G, Burokas A, Sherwin E, et al. Microbiota-related changes in bile acid & tryptophan metabolism are
associated with gastrointestinal dysfunction in a mouse model of autism. EBioMedicine 2017;24:166-78.
9. Foster JA, Rinaman L, Cryan JF. Stress & the gut-brain axis: regulation by the microbiome. Neurobiol Stress 2017;7:124-36.
10. Caspani G, Kennedy S, Foster JA, Swann J. Gut microbial metabolites in depression: understanding the biochemical mechanisms.
Microb Cell 2019;6:454-81.
11. Minter MR, Zhang C, Leone V, Ringus DL, Zhang X, et al. Antibiotic-induced perturbations in gut microbial diversity influences neuro-
inflammation and amyloidosis in a murine model of Alzheimer’s disease. Sci Rep 2016;6:30028.
12. Parashar A, Udayabanu M. Gut microbiota: implications in Parkinson’s disease. Parkinsonism Relat Disord 2017;38:1-7.
13. Lebovitz Y, Ringel-Scaia VM, Allen IC, Theus MH. Emerging developments in microbiome and microglia research: implications for
neurodevelopmental disorders. Front Immunol 2018;9:1993.
14. Verdu EF, Hayes CL, O’ Mahony SM. Chapter 9 - Importance of the microbiota in early life and influence on future health. The Gut-
Brain Axis; 2016. pp. 159-84.
15. Kelly JR, Minuto C, Cryan JF, Clarke G, Dinan TG. Cross talk: the microbiota and neurodevelopmental disorders. Front Neurosci
2017;11:490.
16. Wampach L, Heintz-Buschart A, Hogan A, Muller EEL, Narayanasamy S, et al. Colonization and succession within the human gut
microbiome by archaea, bacteria, and microeukaryotes during the first year of life. Front Microbiol 2017;8:738.
17. Dabbagh K, Dahl ME, Stepick-Biek P, Lewis DB. Toll-like receptor 4 is required for optimal development of Th2 immune responses:
role of dendritic cells. J Immunol 2002;168:4524.
18. Sudo N. Chapter 13 - The hypothalamic-pituitary-adrenal axis and gut microbiota: a target for dietary intervention? The Gut-Brain Axis;
2016. pp. 293-304.
19. Kato TA, Hayakawa K, Monji A, Kanba S. Missing and possible link between neuroendocrine factors, neuropsychiatric disorders, and
microglia. Front Integr Neurosci 2013;7:53.
20. Thion MS, Low D, Silvin A, Chen J, Grisel P, et al. Microbiome influences prenatal and adult microglia in a sex-specific manner. Cell