Page 80 - Read Online
P. 80
Page 148 Das et al. Neuroimmunol Neuroinflammation 2020;7:141-9 I http://dx.doi.org/10.20517/2347-8659.2020.36
REFERENCES
1. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin.
Nature 2020;579:270-3.
2. Wang Z, Yang B, Li Q, Wen L, Zhang R. Clinical features of 69 cases with coronavirus disease 2019 in Wuhan, China. Clin Infect Dis
2020; doi: 10.1093/cid/ciaa272.
3. Mao L, Wang M, Chen S, He Q, Chang J, et al. Neurological manifestations of hospitalized patients with COVID-19 in Wuhan, China: a
retrospective case series study. medRxiv 2020;2020.02.22.20026500.
4. Rabin RC. Some coronavirus patients show signs of brain ailments. N Y Times, April 1 2020. https://www.nytimes.com/2020/04/01/
health/coronavirus-stroke-seizures-confusion.html
5. Baig AM, Khaleeq A, Ali U, Syeda H. Evidence of the COVID-19 virus targeting the CNS: tissue distribution, host-virus interaction, and
proposed neurotropic mechanisms. ACS Chem Neurosci 2020; doi: 10.1021/acschemneuro.0c00122.
6. Li YC, Bai WZ, Hashikawa T. The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19
patients. J Med Virol 2020; doi: 10.1002/jmv.25728.
7. Rodriguez-Morales AJ, Cardona-Ospina JA, Gutierrez-Ocampo E, Villamizar-Pena R, Holguin-Rivera Y, et al. Clinical,
laboratory and imaging features of COVID-19: a systematic review and meta-analysis. Travel Med Infect Dis 2020; doi: 10.1016/
j.tmaid.2020.101623:101623.
8. Lahiri D, Ardila, A. COVID-19 pandemic: a neurological perspective. Cureus 2020;12:e7889.
9. Song Z, Xu Y, Bao L, Zhang L, Yu P, et al. From SARS to MERS, thrusting coronaviruses into the spotlight. Viruses 2019;11.
10. Li K, Wohlford-Lenane C, Perlman S, Zhao J, Jewell AK, et al. Middle East respiratory syndrome coronavirus causes multiple organ
damage and lethal disease in mice transgenic for human dipeptidyl peptidase 4. J Infect Dis 2016;213:712-22.
11. Tsai LK, Hsieh ST, Chang YC. Neurological manifestations in severe acute respiratory syndrome. Acta Neurol Taiwan 2005;14:113-9.
12. Kim JE, Heo JH, Kim HO, Song SH, Park SS, et al. Neurological complications during treatment of Middle East respiratory syndrome. J
Clin Neurol 2017;13:227-33.
13. Netland J, Meyerholz DK, Moore S, Cassell M, Perlman S. Severe acute respiratory syndrome coronavirus infection causes neuronal
death in the absence of encephalitis in mice transgenic for human ACE2. J Virol 2008;82:7264-75.
14. Bleau C, Filliol A, Samson M, Lamontagne L. Brain invasion by mouse hepatitis virus depends on impairment of tight junctions and beta
interferon production in brain microvascular endothelial cells. J Virol 2015;89:9896-908.
15. Butler JE. Drive to the human respiratory muscles. Respir Physiol Neurobiol 2007;159:115-26.
16. Bordoni B, Marelli F, Bordoni G. A review of analgesic and emotive breathing: a multidisciplinary approach. J Multidiscip Healthc
2016;9:97-102.
17. Yang CF, Feldman JL. Efferent projections of excitatory and inhibitory preBotzinger Complex neurons. J Comp Neurol 2018;526:1389-
402.
18. Shevtsova NA, Marchenko V, Bezdudnaya T. Modulation of respiratory system by limb muscle afferents in intact and injured spinal cord.
Front Neurosci 2019;13:289.
19. Chang RB, Strochlic DE, Williams EK, Umans BD, Liberles SD. Vagal sensory neuron subtypes that differentially control breathing. Cell
2015;161:622-33.
20. McGavern DB, Kang SS. Illuminating viral infections in the nervous system. Nat Rev Immunol 2011;11:318-29.
21. Saini JK, Pagliardini S. Breathing during sleep in the postnatal period of rats: the contribution of active expiration. Sleep 2017;40.
22. Huckstepp RT, Henderson LE, Cardoza KP, Feldman JL. Interactions between respiratory oscillators in adult rats. Elife 2016;5.
23. Dutschmann M, Jones SE, Subramanian HH, Stanic D, Bautista TG. The physiological significance of postinspiration in respiratory
control. Prog Brain Res 2014;212:113-30.
24. Anderson TM, Garcia AJ 3rd, Baertsch NA, Pollak J, Bloom JC, et al. A novel excitatory network for the control of breathing. Nature
2016;536:76-80.
25. Poyiadji N, Shahin G, Noujaim D, Stone M, Patel S, et al. COVID-19-associated acute hemorrhagic necrotizing encephalopathy: CT and
MRI features. Radiology 2020; doi: 10.1148/radiol.2020201187:201187.
26. Das G, Mukherjee N, Ghosh S. Neurological insights of COVID-19 pandemic. ACS Chem Neurosci 2020; doi: 10.1021/
acschemneuro.0c00201.
27. Dube M, Le Coupanec A, Wong AHM, Rini JM, Desforges M, et al. Axonal transport enables neuron-to-neuron propagation of human
coronavirus OC43. J Virol 2018;92.
28. Hamming I, Timens W, Bulthuis ML, Lely AT, Navis G, et al. Tissue distribution of ACE2 protein, the functional receptor for SARS
coronavirus. A first step in understanding SARS pathogenesis. J Pathol 2004;203:631-7.
29. Cheng H, Wang Y, Wang GQ. Organ-protective effect of angiotensin-converting enzyme 2 and its effect on the prognosis of COVID-19. J
Med Virol 2020; doi: 10.1002/jmv.25785.
30. Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation.
Science 2020;367:1260-3.
31. Shang J, Ye G, Shi K, Wan Y, Luo C, et al. Structural basis of receptor recognition by SARS-CoV-2. Nature 2020;581:221-4.
32. Ou X, Liu Y, Lei X, Li P, Mi D, et al. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-
reactivity with SARS-CoV. Nat Commun 2020;11:1620.
33. Hoffmann M, Kleine-Weber H, Schroeder S, Kruger N, Herrler T, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is
blocked by a clinically proven protease inhibitor. Cell 2020;181:271-80.e8.