Page 113 - Read Online
P. 113

Muroy et al. Neuroimmunol Neuroinflammation 2020;7:166-82  I  http://dx.doi.org/10.20517/2347-8659.2020.16           Page 181

               6.   Wake H, Moorhouse AJ, Miyamoto A, Nabekura J. Microglia: actively surveying and shaping neuronal circuit structure and function.
                   Trends Neurosci 2013;36:209-17.
               7.   Hanisch UK, Kettenmann H. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci
                   2007;10:1387-94.
               8.   Saijo K, Winner B, Carson CT, Collier JG, Boyer L, et al. A Nurr1/CoREST pathway in microglia and astrocytes protects
                   dopaminergic neurons from inflammation-induced death. Cell 2009;137:47-59.
               9.   Mosher KI, Wyss-Coray T. Microglial dysfunction in brain aging and Alzheimer’s disease. Biochem Pharmacol 2014;88:594-604.
               10.  Hickman S, Izzy S, Sen P, Morsett L, El Khoury J. Microglia in neurodegeneration. Nat Neurosci 2018;21:1359-69.
               11.  Salter MW, Stevens B. Microglia emerge as central players in brain disease. Nat Med 2017;23:1018-27.
               12.  Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH. Mechanisms underlying inflammation in neurodegeneration. Cell
                   2010;140:918-34.
               13.  McCoy MK. Blocking soluble tumor necrosis factor signaling with dominant-negative tumor necrosis factor inhibitor attenuates loss
                   of dopaminergic neurons in models of Parkinson’s disease. J Neurosci 2006;26:9365-75.
               14.  Sriram K, Matheson JM, Benkovic SA, Miller DB, Luster MI, et al. Mice deficient in TNF receptors are protected against
                   dopaminergic neurotoxicity: implications for Parkinson’s disease. FASEB J 2002;16:1474-6.
               15.  Glass CK, Ogawa S. Combinatorial roles of nuclear receptors in inflammation and immunity. Nat Rev Immunol 2005;6:44-55.
               16.  Glass CK, Saijo K. Nuclear receptor transrepression pathways that regulate inflammation in macrophages and T cells. Nat Rev
                   Immunol 2010;10:365-76.
               17.  Medzhitov R, Horng T. Transcriptional control of the inflammatory response. Nat Rev Immunol 2009;9:692-703.
               18.  Smale ST, Natoli G. Transcriptional control of inflammatory responses. Cold Spring Harb Perspect Biol 2014;6:a016261.
               19.  Bernstein BE, Meissner A, Lander ES. The mammalian epigenome. Cell 2007;128:669-81.
               20.  Smale ST, Tarakhovsky A, Natoli G. Chromatin contributions to the regulation of innate immunity. Ann Rev Immunol 2014;32:489-511.
               21.  Soreq L, Rose J, Soreq E, Hardy J, Trabzuni D, et al. Major shifts in glial regional identity are a transcriptional hallmark of human
                   brain aging. Cell Rep 2017;18:557-70.
               22.  Han X, Gui B, Xiong C, Zhao L, Liang J, et al. Destabilizing LSD1 by Jade-2 promotes neurogenesis: an antibraking system in neural
                   development. Mol Cell 2014;55:482-94.
               23.  Baruch K, Deczkowska A, David E, Castellano JM, Miller O, et al. Aging. Aging-induced type I interferon response at the choroid
                   plexus negatively affects brain function. Science 2014;346:89-93.
               24.  Gabuzda D, Yankner BA. Physiology: inflammation links ageing to the brain. Nature 2013;497:197-8.
               25.  Godbout JP, Chen J, Abraham J, Richwine AF, Berg BM, et al. Exaggerated neuroinflammation and sickness behavior in aged mice
                   following activation of the peripheral innate immune system. FASEB J 2005;19:1329-31.
               26.  Sparkman NL, Johnson RW. Neuroinflammation associated with aging sensitizes the brain to the effects of infection or stress.
                   Neuroimmunomodulation 2008;15:323-30.
               27.  Stewart SA. Lentivirus-delivered stable gene silencing by RNAi in primary cells. RNA 2003;9:493-501.
               28.  Sena-Esteves M, Tebbets JC, Steffens S, Crombleholme T, Flake AW. Optimized large-scale production of high titer lentivirus vector
                   pseudotypes. J Virol Methods 2004;122:131-9.
               29.  Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics
                   2012;29:15-21.
               30.  Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol
                   2014;15:31-21.
               31.  Blighe K, Rana S, Lewis M. emphEnhancedVolcano: Publication-ready volcano plots with enhanced colouring and labeling n.d.
                   Available from: https://doi.org/10.18129/B9.bioc.EnhancedVolcano [Last accessed on 6 Mar 2020]
               32.  Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, et al. Metascape provides a biologist-oriented resource for the analysis of
                   systems-level datasets. Nat Commun 2019;10:1523.
               33.  Craik FIM, Salthouse TA. The handbook of aging and cognition. 1st ed. Psychology Press; 2011.
               34.  Simen AA, Bordner KA, Martin MP, Moy LA, Barry LC. Cognitive dysfunction with aging and the role of inflammation. Ther Adv
                   Chronic Dis 2011;2:175-95.
               35.  Nagamoto-Combs K, Kulas J, Combs CK. A novel cell line from spontaneously immortalized murine microglia. J Neurosci Methods
                   2014;233:187-98.
               36.  Zhao J, Bi W, Xiao S, Lan X, Cheng X, et al. Neuroinflammation induced by lipopolysaccharide causes cognitive impairment in mice.
                   Sci Rep 2019;9:5790.
               37.  Glaros TG, Chang S, Gilliam EA, Maitra U, Deng H, et al. Causes and consequences of low grade endotoxemia and inflammatory
                   diseases. Front Biosci (Schol Ed) 2013;5:754-65.
               38.  Sandiego CM, Gallezot JD, Pittman B, Nabulsi N, Lim K, et al. Imaging robust microglial activation after lipopolysaccharide
                   administration in humans with PET. Proc Natl Acad Sci U S A 2015;112:12468-73.
               39.  Brown GC. The endotoxin hypothesis of neurodegeneration. J Neuroinflammation 2019;16:180.
               40.  Chen YC, Yip PK, Huang YL, Sun Y, Wen LL, et al. Sequence variants of toll like receptor 4 and late-onset Alzheimer’s disease. PLoS
                   One 2012;7:e50771.
               41.  Perez-Pardo P, Dodiya HB, Engen PA, Forsyth CB, Huschens AM, et al. Role of TLR4 in the gut-brain axis in Parkinson’s disease: a
                   translational study from men to mice. Gut 2019;68:829-43.
               42.  Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol 2004;4:499-511.
               43.  Takeda K, Akira S. TLR signaling pathways. Semin Immunol 2004;16:3-9.
               44.  Chen LF, Greene WC. Shaping the nuclear action of NF-κB. Nat Rev Mol Cell Biol 2004;5:392-401.
   108   109   110   111   112   113   114   115   116   117   118