Page 114 - Read Online
P. 114

Page 182             Muroy et al. Neuroimmunol Neuroinflammation 2020;7:166-82  I  http://dx.doi.org/10.20517/2347-8659.2020.16

               45.  McDonald PP. Transcriptional regulation in neutrophils: teaching old cells new tricks. Adv Immunol 2004;82:1-48.
               46.  Zheng S, Hedl M, Abraham C. Twist1 and Twist2 contribute to cytokine downregulation following chronic NOD2 stimulation of
                   human macrophages through the coordinated regulation of transcriptional repressors and activators. J Immunol 2015;195:217-26.
               47.  Lo HYG, Jin RU, Sibbel G, Liu D, Karki A, et al. A single transcription factor is sufficient to induce and maintain secretory cell
                   architecture. Genes Dev 2017;31:154-71.
               48.  Kaminska B, Mota M, Pizzi M. Signal transduction and epigenetic mechanisms in the control of microglia activation during
                   neuroinflammation. Biochim Biophys Acta 2016;1862:339-51.
               49.  Nagatsu T, Sawada M. Inflammatory process in Parkinson’s disease: role for cytokines. Curr Pharm Des 2005;11:999-1016.
               50.  Boka G, Anglade P, Wallach D, Javoy-Agid F, Agid Y, et al. Immunocytochemical analysis of tumor necrosis factor and its receptors
                   in Parkinson’s disease. Neurosci Lett 1994;172:151-4.
               51.  Mogi M, Harada M, Riederer P, Narabayashi H, Fujita K, et al. Tumor necrosis factor-alpha (TNF-alpha) increases both in the brain
                   and in the cerebrospinal fluid from parkinsonian patients. Neurosci Lett 1994;165:208-10.
               52.  Qin XY, Zhang SP, Cao C, Loh YP, Cheng Y. Aberrations in peripheral inflammatory cytokine levels in Parkinson disease. JAMA
                   Neurol 2016;73:1316-9.
               53.  Rizzo FR, Musella A, De Vito F, Fresegna D, Bullitta S, et al. Tumor necrosis factor and interleukin-1β modulate synaptic plasticity
                   during neuroinflammation. Neural Plast 2018;2018:1-12.
               54.  Stellwagen D, Malenka RC. Synaptic scaling mediated by glial TNF-α. Nature 2006;440:1054-9.
               55.  Takeuchi H, Jin S, Wang J, Zhang G, Kawanokuchi J, et al. Tumor necrosis factor-alpha induces neurotoxicity via glutamate release
                   from hemichannels of activated microglia in an autocrine manner. J Biol Chem 2006;281:21362-8.
               56.  Ye L, Huang Y, Zhao L, Li Y, Sun L, et al. IL-1β and TNF-α induce neurotoxicity through glutamate production: a potential role for
                   neuronal glutaminase. J Neurochem 2013;125:897-908.
               57.  Denver P, McClean P. Distinguishing normal brain aging from the development of Alzheimer’s disease: inflammation, insulin
                   signaling and cognition. Neural Regen Res 2018;13:1719-12.
               58.  Njie eMalick G, Boelen E, Stassen FR, Steinbusch HWM, Borchelt DR, et al. Ex vivo cultures of microglia from young and aged
                   rodent brain reveal age-related changes in microglial function. Neurobiol Aging 2012;33:195.e1-12.
               59.  Foster CT, Dovey OM, Lezina L, Luo JL, Gant TW, et al. Lysine-specific demethylase 1 regulates the embryonic transcriptome and
                   CoREST stability. Mol Cell Biol 2010;30:4851-63.
               60.  Lee MG, Wynder C, Cooch N, Shiekhattar R. An essential role for CoREST in nucleosomal histone 3 lysine 4 demethylation. Nature
                   2005;437:432-5.
               61.  Grabert K, Michoel T, Karavolos MH, Clohisey S, Baillie JK, et al. Microglial brain region-dependent diversity and selective regional
                   sensitivities to aging. Nat Neurosci 2016;19:504-16.
               62.  Hammond TR, Dufort C, Dissing-Olesen L, Giera S, Young A, et al. Single-cell RNA sequencing of microglia throughout the mouse
                   lifespan and in the injured brain reveals complex cell-state changes. Immunity 2019;50:253-71.e6.
               63.  Deczkowska A, Matcovitch-Natan O, Tsitsou-Kampeli A, Ben-Hamo S, Dvir-Szternfeld R, et al. Mef2C restrains microglial
                   inflammatory response and is lost in brain ageing in an IFN-I-dependent manner. Nat Commun 2017;8:717.
               64.  The Tabula Muris Consortium, Pisco AO, McGeever A, Schaum N, Karkanias J, Neff NF, et al. A single cell transcriptomic atlas
                   characterizes aging tissues in the mouse. bioRxiv; 2019. Available from: https://doi.org/10.1101/661728 [Last accessed on 6 Mar
                   2020]
               65.  Deczkowska A, Amit I, Schwartz M. Microglial immune checkpoint mechanisms. Nat Neurosci 2018;21:779-86.
               66.  Readhead B, Haure-Mirande JV, Funk CC, Richards MA, Shannon P, et al. Multiscale analysis of independent Alzheimer’s cohorts
                   finds disruption of molecular, genetic, and clinical networks by human herpesvirus. Neuron 2018;99:64-82.e7.
               67.  Makin S. The amyloid hypothesis on trial. Nature 2018;559:S4-7.
               68.  Vijaya Kumar DK, Choi SH, Washicosky KJ, Eimer WA, Tucker S, et al. Amyloid-β peptide protects against microbial infection in
                   mouse and worm models of Alzheimer’s disease. Sci Transl Med 2016;8:340ra72.
               69.  Gosztyla ML, Brothers HM, Robinson SR. Alzheimer’s amyloid-β is an antimicrobial peptide: a review of the evidence. J Alzheimers
                   Dis 2018;62:1495-506.
   109   110   111   112   113   114   115   116   117   118   119