Page 40 - Read Online
P. 40

Page 36               Benusa et al. Neuroimmunol Neuroinflammation 2020;7:23-39  I  http://dx.doi.org/10.20517/2347-8659.2019.28

               55.  Sørensen TL, Ransohoff RM. Etiology and pathogenesis of multiple sclerosis. Semin Neurol 1998;18:287-94.
               56.  Trebst C, Sørensen TL, Kivisäkk P, Cathcart MK, Hesselgesser J, et al. CCR1+/CCR5+ mononuclear phagocytes accumulate in the
                   central nervous system of patients with multiple sclerosis. Am J Pathol 2001;159:1701-10.
               57.  Thompson KK, Tsirka SE. The diverse roles of microglia in the neurodegenerative aspects of central nervous system (CNS)
                   autoimmunity. Int J Mol Sci 2017;18:504.
               58.  Bitsch A, Wegener C, da Costa C, Bunkowski S, Reimers CD, et al. Lesion development in Marburg’s type of acute multiple sclerosis:
                   from inflammation to demyelination. Mult Scler 1999;5:138-46.
               59.  Ferguson B, Matyszak MK, Esiri MM, Perry VH. Axonal damage in acute multiple sclerosis lesions. Brain 1997;120:393-9.
               60.  Trapp BD, Peterson J, Ransohoff RM, Rudick R, Mörk S, et al. Axonal transection in the lesions of multiple sclerosis. N Engl J Med
                   1998;338:278-85.
               61.  Reich DS, Lucchinetti CF, Calabresi PA. Multiple sclerosis. N Engl J Med 2018;378:169-80.
               62.  Bjartmar C, Kinkel RP, Kidd G, Rudick RA, Trapp BD. Axonal loss in normal-appearing white matter in a patient with acute MS.
                   Neurology 2001;57:1248-52.
               63.  Kornek B, Lassmann H. Axonal pathology in multiple sclerosis. A historical note. Brain Pathol 1999;9:651-6.
               64.  Lassmann H, van Horssen J. The molecular basis of neurodegeneration in multiple sclerosis. FEBS Lett 2011;585:3715-23.
               65.  Black JA, Newcombe J, Trapp BD, Waxman SG. Sodium channel expression within chronic multiple sclerosis plaques. J Neuropathol
                   Exp Neurol 2007;66:828-37.
               66.  Dutta R, Trapp BD. Mechanisms of neuronal dysfunction and degeneration in multiple sclerosis. Prog Neurobiol 2011;93:1-12.
               67.  Howell OW, Rundle JL, Garg A, Komada M, Brophy PJ, et al. Activated microglia mediate axoglial disruption that contributes to
                   axonal injury in multiple sclerosis. J Neuropathol Exp Neurol 2010;69:1017-33.
               68.  Peterson JW, Bö L, Mörk S, Chang A, Trapp BD. Transected neurites, apoptotic neurons, and reduced inflammation in cortical
                   multiple sclerosis lesions. Ann Neurol 2001;50:389-400.
               69.  Pomicter AD, Shroff SM, Fuss B, Sato-Bigbee C, Brophy PJ, et al. Novel forms of neurofascin 155 in the central nervous system:
                   alterations in paranodal disruption models and multiple sclerosis. Brain 2010;133:389-405.
               70.  Waxman SG. Axonal dysfunction in chronic multiple sclerosis: meltdown in the membrane. Ann Neurol 2008;63:411-3.
               71.  Calabrese M, Reynolds R, Magliozzi R, Castellaro M, Morra A, et al. Regional distribution and evolution of gray matter damage in
                   different populations of multiple sclerosis patients. PloS One 2015;10:e0135428.
               72.  Ajami B, Bennett JL, Krieger C, McNagny KM, Rossi FM. Infiltrating monocytes trigger EAE progression, but do not contribute to
                   the resident microglia pool. Nat Neurosci 2011;14:1142-9.
               73.  Huitinga I, van Rooijen N, de Groot CJ, Uitdehaag BM, Dijkstra CD. Suppression of experimental allergic encephalomyelitis in Lewis
                   rats after elimination of macrophages. J Exp Med 1990;172:1025-33.
               74.  Huitinga I, Damoiseaux JG, Döpp EA, Dijkstra CD. Treatment with anti-CR3 antibodies ED7 and ED8 suppresses experimental
                   allergic encephalomyelitis in Lewis rats. Eur J Immunol 1993;23:709-15.
               75.  Ransohoff RM. Animal models of multiple sclerosis: the good, the bad and the bottom line. Nat Neurosci 2012;15:1074-7.
               76.  Denic A, Johnson AJ, Bieber AJ, Warrington AE, Rodriguez M, et al. The relevance of animal models in multiple sclerosis research.
                   Pathophysiology 2011;18:21-9.
               77.  Dupree JL, Mason JL, Marcus JR, Stull M, Levinson R, et al. Oligodendrocytes assist in the maintenance of sodium channel clusters
                   independent of the myelin sheath. Neuron Glia Biol 2004;1:179-92.
               78.  Torre-Fuentes L, Moreno-Jiménez L, Pytel V, Matías-Guiu JA, Gómez-Pinedo U, et al. Experimental models of demyelination and
                   remyelination. Neurologia 2017:S0213-4853:30236.
               79.  Beeton C, Garcia A, Chandy KG. Induction and clinical scoring of chronic-relapsing experimental autoimmune encephalomyelitis. J
                   Vis Exp 2007:224.
               80.  Kipp M, Nyamoya S, Hochstrasser T, Amor S. Multiple sclerosis animal models: a clinical and histopathological perspective. Brain
                   Pathol 2017;27:123-37.
               81.  Williams KC, Ulvestad E, Hickey WF. Immunology of multiple sclerosis. Clin Neurosci 1994;2:229-45.
               82.  Buttermore ED, Thaxton CL, Bhat MA. Organization and maintenance of molecular domains in myelinated axons. J Neurosci Res
                   2013;91:603-22.
               83.  Bhat MA, Rios JC, Lu Y, Garcia-Fresco GP, Ching W, et al. Axon-glia interactions and the domain organization of myelinated axons
                   requires neurexin IV/Caspr/Paranodin. Neuron 2001;30:369-83.
               84.  Dupree JL, Girault JA, Popko B. Axo-glial interactions regulate the localization of axonal paranodal proteins. J Cell Biol
                   1999;147:1145-52.
               85.  Ishibashi T, Ikenaka K, Shimizu T, Kagawa T, Baba H. Initiation of sodium channel clustering at the node of Ranvier in the mouse
                   optic nerve. Neurochem Res 2003;28:117-25.
               86.  Pillai AM, Thaxton C, Pribisko AL, Cheng JG, Dupree JL, et al. Spatiotemporal ablation of myelinating glia-specific neurofascin
                   (Nfasc NF155) in mice reveals gradual loss of paranodal axoglial junctions and concomitant disorganization of axonal domains. J
                   Neurosci Res 2009;87:1773-93.
               87.  Rasband MN, Peles E, Trimmer JS, Levinson SR, Lux SE, et al. Dependence of nodal sodium channel clustering on paranodal axoglial
                   contact in the developing CNS. J Neurosci 1999;19:7516-28.
               88.  Rosenbluth J, Dupree JL, Popko B. Nodal sodium channel domain integrity depends on the conformation of the paranodal junction,
                   not on the presence of transverse bands. Glia 2003;41:318-25.
               89.  Suzuki A, Hoshi T, Ishibashi T, Hayashi A, Yamaguchi Y, et al. Paranodal axoglial junction is required for the maintenance of the
                   Nav1.6-type sodium channel in the node of Ranvier in the optic nerves but not in peripheral nerve fibers in the sulfatide-deficient
                   mice. Glia 2004;46:274-83.
   35   36   37   38   39   40   41   42   43   44   45