Page 39 - Read Online
P. 39
Benusa et al. Neuroimmunol Neuroinflammation 2020;7:23-39 I http://dx.doi.org/10.20517/2347-8659.2019.28 Page 35
the crosstalk between microglia and neurons. Int J Mol Sci 2018;19:4124.
20. Pósfai B, Cserép C, Orsolits B, Dénes Á. New insights into microglia–neuron interactions: a neuron’s perspective. Neuroscience
2019;405:103-17.
21. Kumar A, Barrett JP, Alvarez-Croda DM, Stoica BA, Faden AI, et al. NOX2 drives M1-like microglial/macrophage activation and
neurodegeneration following experimental traumatic brain injury. Brain Behav Immun 2016;58:291-309.
22. Hool LC. The L-type Ca(2+) channel as a potential mediator of pathology during alterations in cellular redox state. Heart Lung Circ
2009;18:3-10.
23. Hool LC, Arthur PG. Decreasing cellular hydrogen peroxide with catalase mimics the effects of hypoxia on the sensitivity of the
L-type Ca2+ channel to β-adrenergic receptor stimulation in cardiac myocytes. Circ Res 2002;91:601-9.
24. Hudasek K, Brown ST, Fearon IM. H2O2 regulates recombinant Ca2+ channel α1C subunits but does not mediate their sensitivity to
acute hypoxia. Biochem Biophys Res Commun 2004;318:135-41.
25. Mossakowski AA, Pohlan J, Bremer D, Lindquist R, Millward JM, et al. Tracking CNS and systemic sources of oxidative stress during
the course of chronic neuroinflammation. Acta Neuropathol 2015;130:799-814.
26. Benned-Jensen T, Christensen RK, Denti F, Perrier JF, Rasmussen HB, et al. Live imaging of Kv7.2/7.3 cell surface dynamics at the axon
initial segment: high steady-state stability and calpain-dependent excitotoxic downregulation revealed. J Neurosci 2016;36:2261-6.
27. Clark KC, Josephson A, Benusa SD, Hartley RK, Baer M, et al. Compromised axon initial segment integrity in EAE is preceded by
microglial reactivity and contact. Glia 2016;64:1190-1209.
28. Benusa SD, George NM, Sword BA, DeVries GH, Dupree JL. Acute neuroinflammation induces AIS structural plasticity in a NOX2-
dependent manner. J Neuroinflammation 2017;14:116.
29. Clark K, Sword BA, Dupree JL. Oxidative stress induces disruption of the axon initial segment. ASN Neuro 2017;9:1759091417745426.
30. Del Puerto A, Fronzaroli-Molinieres L, Perez-Alvarez MJ, Giraud P, Carlier E, et al. ATP-P2X7 receptor modulates axon initial
segment composition and function in physiological conditions and brain injury. Cereb Cortex 2015;25:2282-94.
31. Evans MD, Sammons RP, Lebron S, Dumitrescu AS, Watkins TB, et al. Calcineurin signaling mediates activity-dependent relocation
of the axon initial segment. J Neurosci 2013;33:6950-63.
32. Schafer DP, Jha S, Liu F, Akella T, McCullough LD, et al. Disruption of the axon initial segment cytoskeleton is a new mechanism for
neuronal injury. J Neurosci 2009;29:13242-54.
33. Bilimoria PM, Stevens B. Microglia function during brain development: new insights from animal models. Brain Res 2015;1617:7-17.
34. Bordt EA, Ceasrine AM, Bilbo SD. Microglia and sexual differentiation of the developing brain: a focus on ontogeny and intrinsic
factors. Glia 2019; Epub ahead of print. doi: 10.1002/glia.23753.
35. Kato G, Inada H, Wake H, Akiyoshi R, Miyamoto A, et al. Microglial contact prevents excess depolarization and rescues neurons from
excitotoxicity. eNeuro 2016;3.
36. Li Y, Du XF, Liu CS, Wen ZL, Du JL. Reciprocal regulation between resting microglial dynamics and neuronal activity in vivo. Dev
Cell 2012;23:1189-202.
37. Cserép C, Pósfai B, Lénárt N, Fekete R, László ZI, et al. Microglia monitor and protect neuronal function through specialized somatic
purinergic junctions. Science 2020;367:528-37.
38. Miyamoto A, Wake H, Ishikawa AW, Eto K, Shibata K, et al. Microglia contact induces synapse formation in developing
somatosensory cortex. Nat Commun 2016;7:12540.
39. Eyo UB, Murugan M, Wu LJ. Microglia-neuron communication in epilepsy. Glia 2017;65:5-18.
40. Eyo UB, Wu LJ. Bidirectional microglia-neuron communication in the healthy brain. Neural Plast 2013;2013:456857.
41. Kettenmann H, Kirchhoff F, Verkhratsky A. Microglia: new roles for the synaptic stripper. Neuron 2013;77:10-8.
42. Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, et al. Microglia sculpt postnatal neural circuits in an activity and
complement-dependent manner. Neuron 2012;74:691-705.
43. Tremblay MÈ, Lowery RL, Majewska AK. Microglial interactions with synapses are modulated by visual experience. PLoS Biol
2010;8:e1000527.
44. Weinhard L, di Bartolomei G, Bolasco G, Machado P, Schieber NL, et al. Microglia remodel synapses by presynaptic trogocytosis and
spine head filopodia induction. Nat Commun 2018;9:1228.
45. Baalman K, Marin MA, Ho TS, Godoy M, Cherian L, et al. Axon initial segment-associated microglia. J Neurosci 2015;35:2283-92.
46. Catale C, Gironda S, Iacono LL, Carola V. Microglial function in the effects of early-life stress on brain and behavioral development.
J Clin Med 2020;9:E468.
47. Koellhoffer EC, McCullough LD, Ritzel RM. Old maids: aging and its impact on microglia function. Int J Mol Sci 2017;18:769.
48. Akhmetzyanova E, Kletenkov K, Mukhamedshina Y, Rizvanov A. Different approaches to modulation of microglia phenotypes after
spinal cord injury. Front Syst Neurosci 2019;13:37.
49. Gaudet AD, Fonken LK. Glial cells shape pathology and repair after spinal cord injury. Neurotherapeutics 2018;15:554-77.
50. Gorse KM, Lafrenaye AD. The importance of inter-species variation in traumatic brain injury-induced alterations of microglial-axonal
interactions. Front Neurol 2018;9:778.
51. Lafrenaye AD. Physical interactions between activated microglia and injured axons: do all contacts lead to phagocytosis? Neural
Regen Res 2016;11:538-40.
52. Lafrenaye AD, Todani M, Walker SA, Povlishock JT. Microglia processes associate with diffusely injured axons following mild
traumatic brain injury in the micro pig. J Neuroinflammation 2015;12:186.
53. Bitsch A, Schuchardt J, Bunkowski S, Kuhlmann T, Brück W. Acute axonal injury in multiple sclerosis. Correlation with
demyelination and inflammation. Brain 2000;123:1174-83.
54. Hemmer B, Kerschensteiner M, Korn T. Role of the innate and adaptive immune responses in the course of multiple sclerosis. Lancet
Neurol 2015;14:406-19.