Page 41 - Read Online
P. 41
Benusa et al. Neuroimmunol Neuroinflammation 2020;7:23-39 I http://dx.doi.org/10.20517/2347-8659.2019.28 Page 37
90. Coman I, Aigrot MS, Seilhean D, Reynolds R, Girault JA, et al. Nodal, paranodal and juxtaparanodal axonal proteins during
demyelination and remyelination in multiple sclerosis. Brain 2006;129:3186-95.
91. Zoupi L, Markoullis K, Kleopa KA, Karagogeos D. Alterations of juxtaparanodal domains in two rodent models of CNS
demyelination. Glia 2013;61:1236-49.
92. Prinz M, Priller J, Sisodia SS, Ransohoff RM. Heterogeneity of CNS myeloid cells and their roles in neurodegeneration. Nat Neurosci
2011;14:1227-35.
93. Steinman L, Martin R, Bernard C, Conlon P, Oksenberg JR. Multiple sclerosis: deeper understanding of its pathogenesis reveals new
targets for therapy. Annu Rev Neurosci 2002;25:491-505.
94. Fife BT, Huffnagle GB, Kuziel WA, Karpus WJ. CC chemokine receptor 2 is critical for induction of experimental autoimmune
encephalomyelitis. J Exp Med 2000;192:899-905.
95. Izikson L, Klein RS, Charo IF, Weiner HL, Luster AD. Resistance to experimental autoimmune encephalomyelitis in mice lacking the
CC chemokine receptor (CCR)2. J Exp Med 2000;192:1075-80.
96. Buffington SA, Rasband MN. The axon initial segment in nervous system disease and injury. Eur J Neurosci 2011;34:1609-19.
97. Hedstrom KL, Ogawa Y, Rasband MN. AnkyrinG is required for maintenance of the axon initial segment and neuronal polarity. J Cell
Biol 2008;183:635-40.
98. Jenkins SM, Bennett V. Developing nodes of Ranvier are defined by ankyrin-G clustering and are independent of paranodal axoglial
adhesion. Proc Natl Acad Sci U S A 2002;99:2303-8.
99. Hartley RK. Differential reactivity of microglia in two mouse models of multiple sclerosis. Theses Diss 2016.
100. Inayat MS, El-Amouri IS, Bani-Ahmad M, Elford HL, Gallicchio VS, et al. Inhibition of allogeneic inflammatory responses by the
Ribonucleotide Reductase Inhibitors, Didox and Trimidox. J Inflamm (Lond) 2010;7:43.
101. Matsebatlela TM, Anderson AL, Gallicchio VS, Elford H, Rice CD. 3,4-Dihydroxy-benzohydroxamic acid (Didox) suppresses pro-
inflammatory profiles and oxidative stress in TLR4-activated RAW264.7 murine macrophages. Chem Biol Interact 2015;233:95-105.
102. Turchan J, Pocernich CB, Gairola C, Chauhan A, Schifitto G, et al. Oxidative stress in HIV demented patients and protection ex vivo
with novel antioxidants. Neurology 2003;60:307-14.
103. Hamada MS, Kole MH. Myelin loss and axonal ion channel adaptations associated with gray matter neuronal hyperexcitability. J
Neurosci 2015;35:7272-86.
104. Evans MD, Dumitrescu AS, Kruijssen DLH, Taylor SE, Grubb MS. Rapid modulation of axon initial segment length influences
repetitive spike firing. Cell Rep 2015;13:1233-45.
105. Grubb MS, Burrone J. Activity-dependent relocation of the axon initial segment fine-tunes neuronal excitability. Nature
2010;465:1070-4.
106. Kuba H, Adachi R, Ohmori H. Activity-dependent and activity-independent development of the axon initial segment. J Neurosci
2014;34:3443-53.
107. Paolicelli RC, Bolasco G, Pagani F, Maggi L, Scianni M, et al. Synaptic pruning by microglia is necessary for normal brain
development. Science 2011;333:1456-8.
108. Rogers JT, Morganti JM, Bachstetter AD, Hudson CE, Peters MM, et al. CX3CR1 deficiency leads to impairment of hippocampal
cognitive function and synaptic plasticity. Version 2. J Neurosci 2011;31:16241-50.
109. Zhan Y, Paolicelli RC, Sforazzini F, Weinhard L, Bolasco G, et al. Deficient neuron-microglia signaling results in impaired functional
brain connectivity and social behavior. Nat Neurosci 2014;17:400-6.
110. Coronado VG, McGuire LC, Sarmiento K, Bell J, Lionbarger MR, et al. Trends in traumatic brain injury in the U.S. and the public
health response: 1995-2009. J Safety Res 2012;43:299-307.
111. Gardner RC, Yaffe K. Epidemiology of mild traumatic brain injury and neurodegenerative disease. Mol Cell Neurosci 2015;66:75-80.
112. Langlois JA, Rutland-Brown W, Wald MM. The epidemiology and impact of traumatic brain injury: a brief overview. J Head Trauma
Rehabil 2006;21:375-8.
113. Taylor CA, Bell JM, Breiding MJ, Xu L. Traumatic brain injury-related emergency department visits, hospitalizations, and deaths -
United States, 2007 and 2013. MMWR Surveill Summ 2017;66:1-16.
114. Coughlin JM, Wang Y, Minn I, Bienko N, Ambinder EB, et al. Imaging of glial cell activation and white matter integrity in brains of
active and recently retired national football league players. JAMA Neurol 2017;74:67-74.
115. Das M, Mohapatra S, Mohapatra SS. New perspectives on central and peripheral immune responses to acute traumatic brain injury. J
Neuroinflammation 2012;9:236.
116. Kelley BJ, Lifshitz J, Povlishock JT. Neuroinflammatory responses after experimental diffuse traumatic brain injury. J Neuropathol
Exp Neurol 2007;66:989-1001.
117. Morganti-Kossmann MC, Satgunaseelan L, Bye N, Kossmann T. Modulation of immune response by head injury. Injury
2007;38:1392-400.
118. Nizamutdinov D, Shapiro LA. Overview of traumatic brain injury: an immunological context. Brain Sci 2017;7.
119. Velázquez A, Ortega M, Rojas S, González-Oliván FJ, Rodríguez-Baeza A. Widespread microglial activation in patients deceased
from traumatic brain injury. Brain Inj 2015;29:1126-33.
120. Coughlin JM, Wang Y, Munro CA, Ma S, Yue C, et al. Neuroinflammation and brain atrophy in former NFL players: an in vivo
multimodal imaging pilot study. Neurobiol Dis 2015;74:58-65.
121. Ramlackhansingh AF, Brooks DJ, Greenwood RJ, Bose SK, Turkheimer FE, et al. Inflammation after trauma: microglial activation
and traumatic brain injury. Ann Neurol 2011;70:374-83.
122. Zhou Y, Lui YW, Zuo XN, Milham MP, Reaume J, et al. Characterization of thalamo-cortical association using amplitude and
connectivity of functional MRI in mild traumatic brain injury. J Magn Reson Imaging 2014;39:1558-68.
123. Boche D, Perry VH, Nicoll JA. Review: activation patterns of microglia and their identification in the human brain. Neuropathol Appl