Page 73 - Read Online
P. 73
Page 8 of 8 Li et al. Metab Target Organ Damage. 2025;5:19 https://dx.doi.org/10.20517/mtod.2025.05
8. Werstuck GH, Lentz SR, Dayal S, et al. Homocysteine-induced endoplasmic reticulum stress causes dysregulation of the cholesterol
and triglyceride biosynthetic pathways. J Clin Invest. 2001;107:1263-73. DOI PubMed PMC
9. Upchurch GR Jr, Welch GN, Fabian AJ, et al. Homocyst(e)ine decreases bioavailable nitric oxide by a mechanism involving
glutathione peroxidase. J Biol Chem. 1997;272:17012-7. DOI PubMed
10. Jakubowski H. Metabolism of homocysteine thiolactone in human cell cultures: possible mechanism for pathological consequences of
elevated homocysteine levels. J Biol Chem. 1997;272:1935-42. DOI
11. Gulsen M, Yesilova Z, Bagci S, et al. Elevated plasma homocysteine concentrations as a predictor of steatohepatitis in patients with
non-alcoholic fatty liver disease. J Gastroenterol Hepatol. 2005;20:1448-55. DOI PubMed
12. Ai Y, Sun Z, Peng C, Liu L, Xiao X, Li J. Homocysteine induces hepatic steatosis involving ER stress response in high methionine
diet-fed mice. Nutrients. 2017;9:346. DOI PubMed PMC
13. Liang H, Xie X, Song X, et al. Orphan nuclear receptor NR4A1 suppresses hyperhomocysteinemia-induced hepatic steatosis in vitro
and in vivo. FEBS Lett. 2019;593:1061-71. DOI PubMed
14. Yan Y, Wu X, Wang P, et al. Homocysteine promotes hepatic steatosis by activating the adipocyte lipolysis in a HIF1α-ERO1α-
dependent oxidative stress manner. Redox Biol. 2020;37:101742. DOI PubMed PMC
15. Tripathi M, Singh BK, Zhou J, et al. Vitamin B and folate decrease inflammation and fibrosis in NASH by preventing syntaxin 17
12
homocysteinylation. J Hepatol. 2022;77:1246-55. DOI PubMed
16. Bagherieh M, Kheirollahi A, Zamani-Garmsiri F, Emamgholipour S, Meshkani R. Folic acid ameliorates palmitate-induced
inflammation through decreasing homocysteine and inhibiting NF-κB pathway in HepG2 cells. Arch Physiol Biochem. 2023;129:893-
900. DOI PubMed
17. Wang Meng, Sun Yue, Yang Anning, et al. Effect of macrophage PDHA1 gene knockout on apoptosis of hepatocytes in mice with
non-alcoholic fatty liver disease. Chin J Pathophysiol. 2023;39:123-30. DOI
18. Xiang W, Yang Y, Weng L, et al. Hyperhomocysteinemia activates NLRP3 inflammasome to cause hepatic steatosis and insulin
resistance via MDM2-mediated ubiquitination of HSF1. Int Immunopharmacol. 2023;118:110085. DOI PubMed
19. Kim R, Nijhout HF, Reed MC. One-carbon metabolism during the menstrual cycle and pregnancy. PLoS Comput Biol.
2021;17:e1009708. DOI PubMed PMC
20. Balakrishnan M, Patel P, Dunn-Valadez S, et al. Women have a lower risk of nonalcoholic fatty liver disease but a higher risk of
progression vs men: a systematic review and meta-analysis. Clin Gastroenterol Hepatol. 2021;19:61-71.e15. DOI PubMed PMC
21. Cherubini A, Rosso C, Della Torre S. Sex-specific effects of PNPLA3 I148M. Liver Int. 2025;45:e16088. DOI PubMed PMC
22. Vilar-Gomez E, Pirola CJ, Sookoian S, et al. Impact of the association between PNPLA3 genetic variation and dietary intake on the
risk of significant fibrosis in patients with NAFLD. Am J Gastroenterol. 2021;116:994-1006. DOI PubMed PMC
23. Lonardo A, Nascimbeni F, Ballestri S, et al. Sex differences in nonalcoholic fatty liver disease: state of the art and identification of
research gaps. Hepatology. 2019;70:1457-69. DOI PubMed PMC
24. Núñez-Sánchez MÁ, Martínez-Sánchez MA, Sierra-Cruz M, et al. Increased hepatic putrescine levels as a new potential factor related
to the progression of metabolic dysfunction-associated steatotic liver disease. J Pathol. 2024;264:101-11. DOI PubMed PMC
25. Satriano L, Lewinska M, Rodrigues PM, Banales JM, Andersen JB. Metabolic rearrangements in primary liver cancers: cause and
consequences. Nat Rev Gastroenterol Hepatol. 2019;16:748-66. DOI PubMed
26. Lu M, Wu Y, Xia M, Zhang Y. The role of metabolic reprogramming in liver cancer and its clinical perspectives. Front Oncol.
2024;14:1454161. DOI PubMed PMC
27. Mejia JC, Pasko J. Primary liver cancers: intrahepatic cholangiocarcinoma and hepatocellular carcinoma. Surg Clin North Am.
2020;100:535-49. DOI PubMed
28. Lopez-Pascual A, Russo-Cabrera JS, Ardaiz N, et al. Non-mitogenic FGF19 mRNA-based therapy for the treatment of experimental
metabolic dysfunction-associated steatotic liver disease (MASLD). Clin Sci. 2024;138:1265-84. DOI PubMed

