Page 73 - Read Online
P. 73

Page 8 of 8              Li et al. Metab Target Organ Damage. 2025;5:19  https://dx.doi.org/10.20517/mtod.2025.05

               8.       Werstuck GH, Lentz SR, Dayal S, et al. Homocysteine-induced endoplasmic reticulum stress causes dysregulation of the cholesterol
                   and triglyceride biosynthetic pathways. J Clin Invest. 2001;107:1263-73.  DOI  PubMed  PMC
               9.       Upchurch GR Jr, Welch GN, Fabian AJ, et al. Homocyst(e)ine decreases bioavailable nitric oxide by a mechanism involving
                   glutathione peroxidase. J Biol Chem. 1997;272:17012-7.  DOI  PubMed
               10.      Jakubowski H. Metabolism of homocysteine thiolactone in human cell cultures: possible mechanism for pathological consequences of
                   elevated homocysteine levels. J Biol Chem. 1997;272:1935-42.  DOI
               11.      Gulsen M, Yesilova Z, Bagci S, et al. Elevated plasma homocysteine concentrations as a predictor of steatohepatitis in patients with
                   non-alcoholic fatty liver disease. J Gastroenterol Hepatol. 2005;20:1448-55.  DOI  PubMed
               12.      Ai Y, Sun Z, Peng C, Liu L, Xiao X, Li J. Homocysteine induces hepatic steatosis involving ER stress response in high methionine
                   diet-fed mice. Nutrients. 2017;9:346.  DOI  PubMed  PMC
               13.      Liang H, Xie X, Song X, et al. Orphan nuclear receptor NR4A1 suppresses hyperhomocysteinemia-induced hepatic steatosis in vitro
                   and in vivo. FEBS Lett. 2019;593:1061-71.  DOI  PubMed
               14.      Yan Y, Wu X, Wang P, et al. Homocysteine promotes hepatic steatosis by activating the adipocyte lipolysis in a HIF1α-ERO1α-
                   dependent oxidative stress manner. Redox Biol. 2020;37:101742.  DOI  PubMed  PMC
               15.      Tripathi M, Singh BK, Zhou J, et al. Vitamin B  and folate decrease inflammation and fibrosis in NASH by preventing syntaxin 17
                                                  12
                   homocysteinylation. J Hepatol. 2022;77:1246-55.  DOI  PubMed
               16.      Bagherieh M, Kheirollahi A, Zamani-Garmsiri F, Emamgholipour S, Meshkani R. Folic acid ameliorates palmitate-induced
                   inflammation through decreasing homocysteine and inhibiting NF-κB pathway in HepG2 cells. Arch Physiol Biochem. 2023;129:893-
                   900.  DOI  PubMed
               17.      Wang Meng, Sun Yue, Yang Anning, et al. Effect of macrophage PDHA1 gene knockout on apoptosis of hepatocytes in mice with
                   non-alcoholic fatty liver disease. Chin J Pathophysiol. 2023;39:123-30.  DOI
               18.      Xiang W, Yang Y, Weng L, et al. Hyperhomocysteinemia activates NLRP3 inflammasome to cause hepatic steatosis and insulin
                   resistance via MDM2-mediated ubiquitination of HSF1. Int Immunopharmacol. 2023;118:110085.  DOI  PubMed
               19.      Kim  R,  Nijhout  HF,  Reed  MC.  One-carbon  metabolism  during  the  menstrual  cycle  and  pregnancy.  PLoS  Comput  Biol.
                   2021;17:e1009708.  DOI  PubMed  PMC
               20.      Balakrishnan M, Patel P, Dunn-Valadez S, et al. Women have a lower risk of nonalcoholic fatty liver disease but a higher risk of
                   progression vs men: a systematic review and meta-analysis. Clin Gastroenterol Hepatol. 2021;19:61-71.e15.  DOI  PubMed  PMC
               21.      Cherubini A, Rosso C, Della Torre S. Sex-specific effects of PNPLA3 I148M. Liver Int. 2025;45:e16088.  DOI  PubMed  PMC
               22.      Vilar-Gomez E, Pirola CJ, Sookoian S, et al. Impact of the association between PNPLA3 genetic variation and dietary intake on the
                   risk of significant fibrosis in patients with NAFLD. Am J Gastroenterol. 2021;116:994-1006.  DOI  PubMed  PMC
               23.      Lonardo A, Nascimbeni F, Ballestri S, et al. Sex differences in nonalcoholic fatty liver disease: state of the art and identification of
                   research gaps. Hepatology. 2019;70:1457-69.  DOI  PubMed  PMC
               24.      Núñez-Sánchez MÁ, Martínez-Sánchez MA, Sierra-Cruz M, et al. Increased hepatic putrescine levels as a new potential factor related
                   to the progression of metabolic dysfunction-associated steatotic liver disease. J Pathol. 2024;264:101-11.  DOI  PubMed  PMC
               25.      Satriano L, Lewinska M, Rodrigues PM, Banales JM, Andersen JB. Metabolic rearrangements in primary liver cancers: cause and
                   consequences. Nat Rev Gastroenterol Hepatol. 2019;16:748-66.  DOI  PubMed
               26.      Lu M, Wu Y, Xia M, Zhang Y. The role of metabolic reprogramming in liver cancer and its clinical perspectives. Front Oncol.
                   2024;14:1454161.  DOI  PubMed  PMC
               27.      Mejia JC, Pasko J. Primary liver cancers: intrahepatic cholangiocarcinoma and hepatocellular carcinoma. Surg Clin North Am.
                   2020;100:535-49.  DOI  PubMed
               28.      Lopez-Pascual A, Russo-Cabrera JS, Ardaiz N, et al. Non-mitogenic FGF19 mRNA-based therapy for the treatment of experimental
                   metabolic dysfunction-associated steatotic liver disease (MASLD). Clin Sci. 2024;138:1265-84.  DOI  PubMed
   68   69   70   71   72   73   74   75   76   77   78