Page 127 - Read Online
P. 127

Pham et al. Microbiome Res Rep 2024;3:25  https://dx.doi.org/10.20517/mrr.2024.01  Page 15 of 16

               12.      Chiang  A,  Dekker  JP.  From  the  pipeline  to  the  bedside:  advances  and  challenges  in  clinical  metagenomics.  J  Infect  Dis
                   2020;221:S331-40.  DOI  PubMed  PMC
               13.      Sharpton TJ. An introduction to the analysis of shotgun metagenomic data. Front Plant Sci 2014;5:209.  DOI  PubMed  PMC
               14.      Piro VC, Lindner MS, Renard BY. DUDes: a top-down taxonomic profiler for metagenomics. Bioinformatics 2016;32:2272-80.  DOI
                   PubMed
               15.      Segata N, Waldron L, Ballarini A, Narasimhan V, Jousson O, Huttenhower C. Metagenomic microbial community profiling using
                   unique clade-specific marker genes. Nat Methods 2012;9:811-4.  DOI  PubMed  PMC
               16.      Tran Q, Pham DT, Phan V. Using 16S rRNA gene as marker to detect unknown bacteria in microbial communities. BMC
                   Bioinformatics 2017;18:499.  DOI  PubMed  PMC
               17.      Popic V, Kuleshov V, Snyder M, Batzoglou S. Fast metagenomic binning via hashing and bayesian clustering. J Comput Biol
                   2018;25:677-88.  DOI  PubMed
               18.      Qian J, Comin M. MetaCon: unsupervised clustering of metagenomic contigs with probabilistic k-mers statistics and coverage. BMC
                   Bioinformatics 2019;20:367.  DOI  PubMed  PMC
               19.      Li D, Liu CM, Luo R, Sadakane K, Lam TW. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics
                   assembly via succinct de Bruijn graph. Bioinformatics 2015;31:1674-6.  DOI  PubMed
               20.      Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaSPAdes: a new versatile metagenomic assembler. Genome Res 2017;27:824-
                   34.  DOI  PubMed  PMC
               21.      Lindner MS, Renard BY. Metagenomic profiling of known and unknown microbes with microbeGPS. PLoS One 2015;10:e0117711.
                   DOI  PubMed  PMC
               22.      Pham DT, Gao S, Phan V. An accurate and fast alignment-free method for profiling microbial communities. J Bioinform Comput Biol
                   2017;15:1740001.  DOI  PubMed
               23.      Müller A, Hundt C, Hildebrandt A, Hankeln T, Schmidt B. MetaCache: context-aware classification of metagenomic reads using
                   minhashing. Bioinformatics 2017;33:3740-8.  DOI  PubMed
               24.      Ounit R, Wanamaker S, Close TJ, Lonardi S. CLARK: fast and accurate classification of metagenomic and genomic sequences using
                   discriminative k-mers. BMC Genomics 2015;16:236.  DOI  PubMed  PMC
               25.      Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol 2014;15:R46.
                   DOI  PubMed  PMC
               26.      Lindgreen S, Adair KL, Gardner PP. An evaluation of the accuracy and speed of metagenome analysis tools. Sci Rep 2016;6:19233.
                   DOI  PubMed  PMC
               27.      Stranneheim H, Käller M, Allander T, Andersson B, Arvestad L, Lundeberg J. Classification of DNA sequences using Bloom filters.
                   Bioinformatics 2010;26:1595-600.  DOI  PubMed  PMC
               28.      Srikakulam SK, Keller S, Dabbaghie F, Bals R, Kalinina OV. MetaProFi: an ultrafast chunked Bloom filter for storing and querying
                   protein and nucleotide sequence data for accurate identification of functionally relevant genetic variants. Bioinformatics 2023;39:btad101.
                   DOI  PubMed  PMC
               29.      Bradley P, den Bakker HC, Rocha EPC, McVean G, Iqbal Z. Ultrafast search of all deposited bacterial and viral genomic data. Nat
                   Biotechnol 2019;37:152-9.  DOI  PubMed  PMC
               30.      Bingmann T, Bradley P, Gauger F, Iqbal Z. COBS: a compact bit-sliced signature index. In: Brisaboa N, Puglisi S, editors. String
                   processing and information retrieval. Cham: Springer; 2019. pp. 285-303.  DOI
               31.      Lemane T, Medvedev P, Chikhi R, Peterlongo P. kmtricks: efficient and flexible construction of Bloom filters for large sequencing
                   data collections. Bioinform Adv 2022;2:vbac029.  DOI  PubMed  PMC
               32.      Bloom BH. Space/time trade-offs in hash coding with allowable errors. Commun ACM 1970;13:422-6.  DOI
               33.      Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn: machine learning in Python. J Mach Learn Res 2011;12:2825-30.
                   Available from: https://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf?ref=https:/. [Last accessed on 28 March
                   2024].
               34.      Buitinck L, Louppe G, Blondel M, et al. API design for machine learning software: experiences from the scikit-learn project. arXiv.
                   [Preprint.] Sep 1, 2013 [accessed 2024 Mar 28]. Available from: https://arxiv.org/abs/1309.0238.
               35.      Mende DR, Waller AS, Sunagawa S, et al. Assessment of metagenomic assembly using simulated next generation sequencing data.
                   PLoS One 2012;7:e31386.  DOI  PubMed  PMC
               36.      Sczyrba A, Hofmann P, Belmann P, et al. Critical Assessment of Metagenome Interpretation-a benchmark of metagenomics software.
                   Nat Methods 2017;14:1063-71.  DOI  PubMed  PMC
               37.      Ye SH, Siddle KJ, Park DJ, Sabeti PC. Benchmarking metagenomics tools for taxonomic classification. Cell 2019;178:779-94.  DOI
                   PubMed  PMC
               38.      Salzberg SL, Breitwieser FP, Kumar A, et al. Next-generation sequencing in neuropathologic diagnosis of infections of the nervous
                   system. Neurol Neuroimmunol Neuroinflamm 2016;3:e251.  DOI  PubMed  PMC
               39.     Wood DE, Lu J, Langmead B. Improved metagenomic analysis with Kraken 2. Genome Biol 2019;20:257.  DOI  PubMed  PMC
               40.      Breitwieser FP, Baker DN, Salzberg SL. KrakenUniq: confident and fast metagenomics classification using unique k-mer counts.
                   Genome Biol 2018;19:198.  DOI  PubMed  PMC
               41.      Kim D, Song L, Breitwieser FP, Salzberg SL. Centrifuge: rapid and sensitive classification of metagenomic sequences. Genome Res
                   2016;26:1721-9.  DOI  PubMed  PMC
   122   123   124   125   126   127   128   129   130   131   132