Page 79 - Read Online
P. 79
Elefante et al. Mini-invasive Surg 2021;5:7 I http://dx.doi.org/10.20517/2574-1225.2020.102 Page 11 of 11
Neurochir (Wien) 2010;152:1315-9; discussion 1319.
51. Wang S, Kim S, Zhang Y, et al. Determination of grade and subtype of meningiomas by using histogram analysis of diffusion-tensor
imaging metrics. Radiology 2012;262:584-92.
52. Tropine A, Dellani PD, Glaser M, et al. Differentiation of fibroblastic meningiomas from other benign subtypes using diffusion tensor
imaging. J Magn Reson Imaging 2007;25:703-8.
53. Kashimura H, Inoue T, Ogasawara K, et al. Prediction of meningioma consistency using fractional anisotropy value measured by
magnetic resonance imaging. J Neurosurg 2007;107:784-7.
54. Ortega-Porcayo LA, Ballesteros-Zebadúa P, Marrufo-Meléndez OR, et al. Prediction of mechanical properties and subjective consistency
of meningiomas using T1-T2 assessment versus fractional anisotropy. World Neurosurg 2015;84:1691-8.
55. Romani R, Tang WJ, Mao Y, et al. Diffusion tensor magnetic resonance imaging for predicting the consistency of intracranial
meningiomas. Acta Neurochir (Wien) 2014;156:1837-45.
56. Yin Z, Hughes JD, Trzasko JD, et al. Slip interface imaging based on MR-elastography preoperatively predicts meningioma-brain
adhesion. J Magn Reson Imaging 2017;46:1007-16.
57. Reubi JC. Clinical relevance of somatostatin receptor imaging. Eur J Endocrinol 1994;131:575-6.
58. Reimold M, la Fougère C. Molecular imaging in neurological diseases. Radiologe 2016;56:580-7.
59. Afshar-Oromieh A, Giesel FL, Linhart HG, et al. Detection of cranial meningiomas: comparison of Ga-DOTATOC PET/CT and
68
contrast-enhanced MRI. Eur J Nucl Med Mol Imaging 2012;39:1409-15.
60. Klingenstein A, Haug AR, Miller C, Hintschich C. Ga-68-DOTA-TATE PET/CT for discrimination of tumors of the optic pathway. Orbit
2015;34:16-22.
61. Nowosielski M, Galldiks N, Iglseder S, et al. Diagnostic challenges in meningioma. Neuro Oncol 2017;19:1588-98.
62. Sommerauer M, Burkhardt JK, Frontzek K, et al. 68Gallium-DOTATATE PET in meningioma: a reliable predictor of tumor growth rate?
Neuro Oncol 2016;18:1021-7.
63. Slotty PJ, Behrendt FF, Langen KJ, Cornelius JF. (68)Ga-DOTATATE-positron emission tomography imaging in spinal meningioma. J
Craniovertebr Junction Spine 2014;5:44-6.
64. Rachinger W, Stoecklein VM, Terpolilli NA, et al. Increased 68Ga-DOTATATE uptake in PET imaging discriminates meningioma and
tumor-free tissue. J Nucl Med 2015;56:347-53.
65. Galldiks N, Albert NL, Sommerauer M, et al. PET imaging in patients with meningioma-report of the RANO/PET Group. Neuro Oncol
2017;19:1576-87.
66. Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data. Radiology 2016;278:563-77.
67. Koçak B, Durmaz EŞ, Ateş E, Kılıçkesmez Ö. Radiomics with artificial intelligence: a practical guide for beginners. Diagn Interv Radiol
2019;25:485-95.
68. Park YW, Oh J, You SC, et al. Radiomics and machine learning may accurately predict the grade and histological subtype in meningiomas
using conventional and diffusion tensor imaging. Eur Radiol 2019;29:4068-76.
69. Laukamp KR, Thiele F, Shakirin G, et al. Fully automated detection and segmentation of meningiomas using deep learning on routine
multiparametric MRI. Eur Radiol 2019;29:124-32.
70. Morin O, Chen WC, Nassiri F, et al. Integrated models incorporating radiologic and radiomic features predict meningioma grade, local
failure, and overall survival. Neurooncol Adv 2019;1:vdz011.
71. Zhang Y, Chen JH, Chen TY, et al. Radiomics approach for prediction of recurrence in skull base meningiomas. Neuroradiology
2019;61:1355-64.
72. Florez E, Nichols T, E Parker E, T Lirette S, Howard CM, Fatemi A. Multiparametric magnetic resonance imaging in the assessment of
primary brain tumors through radiomic features: a metric for guided radiation treatment planning. Cureus 2018;10:e3426.