Page 312 - Read Online
P. 312
Torabinia et al. Mini-invasive Surg 2021;5:32 https://dx.doi.org/10.20517/2574-1225.2021.63 Page 11 of 12
PubMed
7. Mack MJ. Minimally invasive cardiac surgery. Surg Endosc 2006;20 Suppl 2:S488-92. DOI PubMed
8. Gillion JF, Fagniez PL. Chronic pain and cutaneous sensory changes after inguinal hernia repair: comparison between open and
laparoscopic techniques. Hernia 1999;3:75-80. DOI
9. Dedemadi G, Sgourakis G, Karaliotas C, Christofides T, Kouraklis G, Karaliotas C. Comparison of laparoscopic and open tension-free
repair of recurrent inguinal hernias: a prospective randomized study. Surg Endosc 2006;20:1099-104. DOI PubMed
10. Subramanian VA, Mccabe JC, Geller CM. Minimally invasive direct coronary artery bypass grafting: two-year clinical experience.
Ann Thorac Surg 1997;64:1648-55. DOI PubMed
11. Stevens JH, Burdon TA, Peters WS, et al. Port-access coronary artery bypass grafting: a proposed surgical method. J Thorac
Cardiovasc Surg 1996;111:567-73. DOI PubMed
12. Ota T, Degani A, Schwartzman D, et al. A highly articulated robotic surgical system for minimally invasive surgery. Ann Thorac Surg
2009;87:1253-6. DOI PubMed PMC
13. Pyciński B, Juszczyk J, Bożek P, Ciekalski J, Dzielicki J, Pietka E. Image navigation in minimally invasive surgery. In: Piętka E,
Kawa J, Wieclawek W, editors. Information technologies in biomedicine, volume 4. Cham: Springer International Publishing; 2014. p.
25-34.
14. Antico M, Sasazawa F, Wu L, et al. Ultrasound guidance in minimally invasive robotic procedures. Med Image Anal 2019;54:149-67.
DOI PubMed
15. Pisano GP, Bohmer RM, Edmondson AC. Organizational differences in rates of learning: evidence from the adoption of minimally
invasive cardiac surgery. Management Science 2001;47:752-68. DOI
16. Moorthy K, Munz Y, Dosis A, et al. Dexterity enhancement with robotic surgery. Surg Endosc 2004;18:790-5. DOI PubMed
17. Milano EG, Capelli C, Wray J, et al. Current and future applications of 3D printing in congenital cardiology and cardiac surgery. Br J
Radiol 2019;92:20180389. DOI PubMed PMC
18. Min JK, Mosadegh B, Dunham S, Al'Aref SJ. 3D Printing applications in cardiovascular medicine. Cambridge: Academic Press; 2018.
19. Vukicevic M, Mosadegh B, Min JK, Little SH. Cardiac 3D printing and its future directions. JACC Cardiovasc Imaging 2017;10:171-
84. DOI PubMed PMC
20. Biglino G, Capelli C, Binazzi A, et al. Virtual and real bench testing of a new percutaneous valve device: a case study.
EuroIntervention 2012;8:120-8. DOI PubMed
21. Schmauss D, Haeberle S, Hagl C, Sodian R. Three-dimensional printing in cardiac surgery and interventional cardiology: a single-
centre experience. Eur J Cardiothorac Surg 2015;47:1044-52. DOI PubMed
22. Ryan JR, Moe TG, Richardson R, Frakes DH, Nigro JJ, Pophal S. A novel approach to neonatal management of tetralogy of Fallot,
with pulmonary atresia, and multiple aortopulmonary collaterals. JACC Cardiovasc Imaging 2015;8:103-4. DOI PubMed
23. Chaowu Y, Hua L, Xin S. Three-dimensional printing as an aid in transcatheter closure of secundum atrial septal defect with rim
deficiency: in vitro trial occlusion based on a personalized heart model. Circulation 2016;133:e608-10. DOI PubMed
24. Sodian R, Weber S, Markert M, et al. Stereolithographic models for surgical planning in congenital heart surgery. Ann Thorac Surg
2007;83:1854-7. DOI PubMed
25. Noecker AM, Chen JF, Zhou Q, et al. Development of patient-specific three-dimensional pediatric cardiac models. ASAIO J
2006;52:349-53. DOI PubMed
26. Vranicar M, Gregory W, Douglas WI, Di Sessa P, Di Sessa TG. The use of stereolithographic hand held models for evaluation of
congenital anomalies of the great arteries. Stud Health Technol Inform 2008;132:538-43. PubMed
27. Schievano S, Migliavacca F, Coats L, et al. Percutaneous pulmonary valve implantation based on rapid prototyping of right ventricular
outflow tract and pulmonary trunk from MR data. Radiology 2007;242:490-7. DOI PubMed
28. Vukicevic M, Conover T, Jaeggli M, et al. Control of respiration-driven retrograde flow in the subdiaphragmatic venous return of the
Fontan circulation. ASAIO J 2014;60:391-9. DOI PubMed PMC
29. Garekar S, Bharati A, Chokhandre M, et al. Clinical application and multidisciplinary assessment of three dimensional printing in
double outlet right ventricle with remote ventricular septal defect. World J Pediatr Congenit Heart Surg 2016;7:344-50. DOI PubMed
30. Deferm S, Meyns B, Vlasselaers D, Budts W. 3D-printing in congenital cardiology: from flatland to spaceland. J Clin Imaging Sci
2016;6:8. DOI PubMed PMC
31. Kiraly L, Tofeig M, Jha NK, Talo H. Three-dimensional printed prototypes refine the anatomy of post-modified Norwood-1 complex
aortic arch obstruction and allow presurgical simulation of the repair. Interact Cardiovasc Thorac Surg 2016;22:238-40. DOI
PubMed
32. Biglino G, Capelli C, Taylor AM, Schievano S. 3D Printing Cardiovascular Anatomy: A Single-Centre Experience. In: Shishkovsky
IV, editor. New Trends in 3D Printing. IntechOpen; 2016. DOI
33. Anwar S, Singh GK, Varughese J, et al. 3D printing in complex congenital heart disease: across a spectrum of age, pathology, and
imaging techniques. JACC Cardiovasc Imaging 2017;10:953-6. DOI PubMed
34. Olivieri LJ, Krieger A, Loke YH, Nath DS, Kim PC, Sable CA. Three-dimensional printing of intracardiac defects from three-
dimensional echocardiographic images: feasibility and relative accuracy. J Am Soc Echocardiogr 2015;28:392-7. DOI PubMed
35. Jang S, Torabinia M, Dhrif H, et al. Development of a hybrid training simulator for structural heart disease interventions. Advanced
Intelligent Systems 2020;2:2000109. DOI
36. Girshick R, Donahue J, Darrell T, Malik J. Rich feature hierarchies for accurate object detection and semantic segmentation. 2014
IEEE Conference on Computer Vision and Pattern Recognition; 2014 Jun 23-28; Columbus, USA. 2014.
37. Jia Y, Shelhamer E, Donahue J, et al. 2014. Caffe: convolutional architecture for fast feature embedding. In Proceedings of the 22nd