Page 312 - Read Online
P. 312

Torabinia et al. Mini-invasive Surg 2021;5:32  https://dx.doi.org/10.20517/2574-1225.2021.63  Page 11 of 12

                   PubMed
               7.       Mack MJ. Minimally invasive cardiac surgery. Surg Endosc 2006;20 Suppl 2:S488-92.  DOI  PubMed
               8.       Gillion JF, Fagniez PL. Chronic pain and cutaneous sensory changes after inguinal hernia repair: comparison between open and
                   laparoscopic techniques. Hernia 1999;3:75-80.  DOI
               9.       Dedemadi G, Sgourakis G, Karaliotas C, Christofides T, Kouraklis G, Karaliotas C. Comparison of laparoscopic and open tension-free
                   repair of recurrent inguinal hernias: a prospective randomized study. Surg Endosc 2006;20:1099-104.  DOI  PubMed
               10.      Subramanian VA, Mccabe JC, Geller CM. Minimally invasive direct coronary artery bypass grafting: two-year clinical experience.
                   Ann Thorac Surg 1997;64:1648-55.  DOI  PubMed
               11.      Stevens JH, Burdon TA, Peters WS, et al. Port-access coronary artery bypass grafting: a proposed surgical method. J Thorac
                   Cardiovasc Surg 1996;111:567-73.  DOI  PubMed
               12.      Ota T, Degani A, Schwartzman D, et al. A highly articulated robotic surgical system for minimally invasive surgery. Ann Thorac Surg
                   2009;87:1253-6.  DOI  PubMed  PMC
               13.      Pyciński B, Juszczyk J, Bożek P, Ciekalski J, Dzielicki J, Pietka E. Image navigation in minimally invasive surgery. In: Piętka E,
                   Kawa J, Wieclawek W, editors. Information technologies in biomedicine, volume 4. Cham: Springer International Publishing; 2014. p.
                   25-34.
               14.      Antico M, Sasazawa F, Wu L, et al. Ultrasound guidance in minimally invasive robotic procedures. Med Image Anal 2019;54:149-67.
                   DOI  PubMed
               15.      Pisano GP, Bohmer RM, Edmondson AC. Organizational differences in rates of learning: evidence from the adoption of minimally
                   invasive cardiac surgery. Management Science 2001;47:752-68.  DOI
               16.      Moorthy K, Munz Y, Dosis A, et al. Dexterity enhancement with robotic surgery. Surg Endosc 2004;18:790-5.  DOI  PubMed
               17.      Milano EG, Capelli C, Wray J, et al. Current and future applications of 3D printing in congenital cardiology and cardiac surgery. Br J
                   Radiol 2019;92:20180389.  DOI  PubMed  PMC
               18.      Min JK, Mosadegh B, Dunham S, Al'Aref SJ. 3D Printing applications in cardiovascular medicine. Cambridge: Academic Press; 2018.
               19.      Vukicevic M, Mosadegh B, Min JK, Little SH. Cardiac 3D printing and its future directions. JACC Cardiovasc Imaging 2017;10:171-
                   84.  DOI  PubMed  PMC
               20.      Biglino G, Capelli C, Binazzi A, et al. Virtual and real bench testing of a new percutaneous valve device: a case study.
                   EuroIntervention 2012;8:120-8.  DOI  PubMed
               21.      Schmauss D, Haeberle S, Hagl C, Sodian R. Three-dimensional printing in cardiac surgery and interventional cardiology: a single-
                   centre experience. Eur J Cardiothorac Surg 2015;47:1044-52.  DOI  PubMed
               22.      Ryan JR, Moe TG, Richardson R, Frakes DH, Nigro JJ, Pophal S. A novel approach to neonatal management of tetralogy of Fallot,
                   with pulmonary atresia, and multiple aortopulmonary collaterals. JACC Cardiovasc Imaging 2015;8:103-4.  DOI  PubMed
               23.      Chaowu Y, Hua L, Xin S. Three-dimensional printing as an aid in transcatheter closure of secundum atrial septal defect with rim
                   deficiency: in vitro trial occlusion based on a personalized heart model. Circulation 2016;133:e608-10.  DOI  PubMed
               24.      Sodian R, Weber S, Markert M, et al. Stereolithographic models for surgical planning in congenital heart surgery. Ann Thorac Surg
                   2007;83:1854-7.  DOI  PubMed
               25.      Noecker AM, Chen JF, Zhou Q, et al. Development of patient-specific three-dimensional pediatric cardiac models. ASAIO J
                   2006;52:349-53.  DOI  PubMed
               26.      Vranicar M, Gregory W, Douglas WI, Di Sessa P, Di Sessa TG. The use of stereolithographic hand held models for evaluation of
                   congenital anomalies of the great arteries. Stud Health Technol Inform 2008;132:538-43.  PubMed
               27.      Schievano S, Migliavacca F, Coats L, et al. Percutaneous pulmonary valve implantation based on rapid prototyping of right ventricular
                   outflow tract and pulmonary trunk from MR data. Radiology 2007;242:490-7.  DOI  PubMed
               28.      Vukicevic M, Conover T, Jaeggli M, et al. Control of respiration-driven retrograde flow in the subdiaphragmatic venous return of the
                   Fontan circulation. ASAIO J 2014;60:391-9.  DOI  PubMed  PMC
               29.      Garekar S, Bharati A, Chokhandre M, et al. Clinical application and multidisciplinary assessment of three dimensional printing in
                   double outlet right ventricle with remote ventricular septal defect. World J Pediatr Congenit Heart Surg 2016;7:344-50.  DOI  PubMed
               30.      Deferm S, Meyns B, Vlasselaers D, Budts W. 3D-printing in congenital cardiology: from flatland to spaceland. J Clin Imaging Sci
                   2016;6:8.  DOI  PubMed  PMC
               31.      Kiraly L, Tofeig M, Jha NK, Talo H. Three-dimensional printed prototypes refine the anatomy of post-modified Norwood-1 complex
                   aortic arch obstruction and allow presurgical simulation of the repair. Interact Cardiovasc Thorac Surg 2016;22:238-40.  DOI
                   PubMed
               32.      Biglino G, Capelli C, Taylor AM, Schievano S. 3D Printing Cardiovascular Anatomy: A Single-Centre Experience. In: Shishkovsky
                   IV, editor. New Trends in 3D Printing. IntechOpen; 2016.  DOI
               33.      Anwar S, Singh GK, Varughese J, et al. 3D printing in complex congenital heart disease: across a spectrum of age, pathology, and
                   imaging techniques. JACC Cardiovasc Imaging 2017;10:953-6.  DOI  PubMed
               34.      Olivieri LJ, Krieger A, Loke YH, Nath DS, Kim PC, Sable CA. Three-dimensional printing of intracardiac defects from three-
                   dimensional echocardiographic images: feasibility and relative accuracy. J Am Soc Echocardiogr 2015;28:392-7.  DOI  PubMed
               35.      Jang S, Torabinia M, Dhrif H, et al. Development of a hybrid training simulator for structural heart disease interventions. Advanced
                   Intelligent Systems 2020;2:2000109.  DOI
               36.      Girshick R, Donahue J, Darrell T, Malik J. Rich feature hierarchies for accurate object detection and semantic segmentation. 2014
                   IEEE Conference on Computer Vision and Pattern Recognition; 2014 Jun 23-28; Columbus, USA. 2014.
               37.      Jia Y, Shelhamer E, Donahue J, et al. 2014. Caffe: convolutional architecture for fast feature embedding. In Proceedings of the 22nd
   307   308   309   310   311   312   313   314   315   316   317