Page 604 - Read Online
P. 604

Saxena et al. Mini-invasive Surg 2020;4:62  I  http://dx.doi.org/10.20517/2574-1225.2020.68                                    Page 13 of 15

               DECLARATIONS
               Authors’ contributions
               Performed data analysis and interpretation: Saxena V
               Writing - original draft, review and editing: Saxena V, Pandey LM
               Conceptualization, draft designing, formal analysis, supervision: Pandey LM

               Availability of data and materials
               Not applicable.

               Financial support and sponsorship
               None.

               Conflicts of interest
               All authors declared that there are no conflicts of interest.

               Ethical approval and consent to participate
               Not applicable.


               Consent for publication
               Not applicable.


               Copyright
               © The Author(s) 2020.


               REFERENCES
               1.   Roy A, Saxena V, Pandey LM. 3D printing for cardiovascular tissue engineering: a review. Mater Technol 2018;33:433-42.
               2.   Bentzon JF, Otsuka F, Virmani R, Falk E. Mechanisms of plaque formation and rupture. Circ Res 2014;114:1852-66.
               3.   Ross R. Atherosclerosis--an inflammatory disease. N Engl J Med 1999;340:115-26.
               4.   Serruys PW, Morice MC, Kappetein AP, Colombo A, Holmes DR, et al; SYNTAX Investigators. Percutaneous coronary intervention
                   versus coronary-artery bypass grafting for severe coronary artery disease. N Engl J Med 2009;360:961-72.
               5.   Wen Y, Li XY, Li ZY, Wang ML, Chen PP, et al. Intra-myocardial delivery of a novel thermosensitive hydrogel inhibits post-infarct heart
                   failure after degradation in rat. J Cardiovasc Transl Res 2020; doi: 10.1007/s12265-019-09941-x.
               6.   Chen Y, Li C, Li C, Chen J, Li Y, et al. Tailorable hydrogel improves retention and cardioprotection of intramyocardial transplanted
                   mesenchymal stem cells for the treatment of acute myocardial infarction in mice. J Am Heart Assoc 2020;9:e013784.
               7.   Cattelan G, Guerrero Gerbolés A, Foresti R, Pramstaller PP, Rossini A, et al. Alginate formulations: current developments in the race for
                   hydrogel-based cardiac regeneration. Front Bioeng Biotechnol 2020;8:414.
               8.   Saxena V, Hasan A, Sharma S, Pandey LM. Edible oil nanoemulsion: an organic nanoantibiotic as a potential biomolecule delivery
                   vehicle. Int J Polymeric Mater Polymeric Biomaterials 2017;67:410-9.
               9.   Hasan A, Waibhaw G, Tiwari S, Dharmalingam K, Shukla I, et al. Fabrication and characterization of chitosan, polyvinylpyrrolidone, and
                   cellulose nanowhiskers nanocomposite films for wound healing drug delivery application. J Biomed Mater Res A 2017;105:2391-404.
               10.  Hasan A, Waibhaw G, Saxena V, Pandey LM. Nano-biocomposite scaffolds of chitosan, carboxymethyl cellulose and silver nanoparticle
                   modified cellulose nanowhiskers for bone tissue engineering applications. Int J Biol Macromol 2018;111:923-34.
               11.  Hasan A, Saxena V, Pandey LM. Surface functionalization of Ti6Al4V via self-assembled monolayers for improved protein adsorption
                   and fibroblast adhesion. Langmuir 2018;34:3494-506.
               12.  Deka S, Saxena V, Hasan A, Chandra P, Pandey LM. Synthesis, characterization and in vitro analysis of α-Fe2O3-GdFeO3 biphasic
                   materials as therapeutic agent for magnetic hyperthermia applications. Mater Sci Eng C Mater Biol Appl 2018;92:932-41.
               13.  Fopase R, Saxena V, Seal P, Borah J, Pandey LM. Yttrium iron garnet for hyperthermia applications: Synthesis, characterization and in-
                   vitro analysis. Mater Sci Eng C 2020;116:111163.
               14.  Saxena V, Chandra P, Pandey LM. Design and characterization of novel Al-doped ZnO nanoassembly as an effective nanoantibiotic. Appl
                   Nanosci 2018;8:1925-41.
               15.  Saxena V, Pandey LM. Bimetallic assembly of Fe(III) doped ZnO as an effective nanoantibiotic and its ROS independent antibacterial
                   mechanism. J Trace Elem Med Biol 2020;57:126416.
               16.  Hasan A, Saxena V, Castelletto V, Zimbitas G, Seitsonen J, et al. Chain-end modifications and sequence arrangements of antimicrobial
                   peptoids for mediating activity and nano-assembly. Front Chem 2020;8:416.
   599   600   601   602   603   604   605   606   607   608   609