Page 58 - Read Online
P. 58

Fasanella. Mini-invasive Surg 2024;8:5  https://dx.doi.org/10.20517/2574-1225.2023.79  Page 9 of 10

               28.      Tuderti G, Brassetti A, Mastroianni R, et al. Expanding the limits of nephron-sparing surgery: surgical technique and mid-term
                   outcomes of purely off-clamp robotic partial nephrectomy for totally endophytic renal tumors. Int J Urol 2022;29:282-8.  DOI
                   PubMed
               29.      Sulek JE, Steward JE, Bahler CD, et al. Folate-targeted intraoperative fluorescence, OTL38, in robotic-assisted laparoscopic partial
                   nephrectomy. Scand J Urol 2021;55:331-6.  DOI  PubMed
               30.      Povoski SP, Hall NC, Murrey DA Jr, et al. Multimodal imaging and detection strategy with 124 I-labeled chimeric monoclonal
                   antibody cG250 for accurate localization and confirmation of extent of disease during laparoscopic and open surgical resection of clear
                   cell renal cell carcinoma. Surg Innov 2013;20:59-69.  DOI  PubMed  PMC
               31.      Hekman MC, Boerman OC, de Weijert M, et al. Targeted dual-modality imaging in renal cell carcinoma: an ex vivo kidney perfusion
                   study. Clin Cancer Res 2016;22:4634-42.  DOI  PubMed
               32.      Phung MC, Rouse AR, Pangilinan J, et al. Investigation of confocal microscopy for differentiation of renal cell carcinoma versus
                   benign tissue. Can an optical biopsy be performed? Asian J Urol 2020;7:363-8.  DOI  PubMed  PMC
               33.      Su LM, Kuo J, Allan RW, et al. Fiber-optic confocal laser endomicroscopy of small renal masses: toward real-time optical diagnostic
                   biopsy. J Urol 2016;195:486-92.  DOI  PubMed
               34.      Gordetsky J, Gorin MA, Canner J, et al. Frozen section during partial nephrectomy: does it predict positive margins? BJU Int
                   2015;116:868-72.  DOI  PubMed
               35.      Puliatti S, Bertoni L, Pirola GM, et al. Ex vivo fluorescence confocal microscopy: the first application for real-time pathological
                   examination of prostatic tissue. BJU Int 2019;124:469-76.  DOI  PubMed
               36.      Mir MC, Bancalari B, Calatrava A, et al. Ex-vivo confocal fluorescence microscopy for rapid evaluation of renal core biopsy. Minerva
                   Urol Nefrol 2020;72:109-13.  DOI  PubMed
               37.      Prata F, Anceschi U, Taffon C, et al. Real-time urethral and ureteral assessment during radical cystectomy using ex-vivo optical
                   imaging: a novel technique for the evaluation of fresh unfixed surgical margins. Curr Oncol 2023;30:3421-31.  DOI  PubMed  PMC
               38.      Linehan JA, Bracamonte ER, Hariri LP, et al. Feasibility of optical coherence tomography imaging to characterize renal neoplasms:
                   limitations in resolution and depth of penetration. BJU Int 2011;108:1820-4.  DOI  PubMed
               39.      Hekman MCH, Rijpkema M, Langenhuijsen JF, Boerman OC, Oosterwijk E, Mulders PFA. Intraoperative imaging techniques to
                   support complete tumor resection in partial nephrectomy. Eur Urol Focus 2018;4:960-8.  DOI  PubMed
               40.      Esperto F, Prata F, Autrán-Gómez AM, et al. New technologies for kidney surgery planning 3D, impression, augmented reality 3D,
                   reconstruction: current realities and expectations. Curr Urol Rep 2021;22:35.  DOI  PubMed  PMC
               41.      Sun Z. Insights into 3D printing in medical applications. Quant Imaging Med Surg 2019;9:1-5.  DOI  PubMed  PMC
               42.      Papalia R, Panebianco V, Mastroianni R, et al. Accuracy of magnetic resonance imaging to identify pseudocapsule invasion in renal
                   tumors. World J Urol 2020;38:407-15.  DOI  PubMed
               43.      Kim JH, Sun HY, Hwang J, et al. Diagnostic accuracy of contrast-enhanced computed tomography and contrast-enhanced magnetic
                   resonance imaging of small renal masses in real practice: sensitivity and specificity according to subjective radiologic interpretation.
                   World J Surg Oncol 2016;14:260.  DOI  PubMed  PMC
               44.      Moldovanu CG, Lebovici A, Buruian MM. A systematic review of the clinical value and applications of three-dimensional virtual
                   reconstructions in renal tumors. Med Pharm Rep 2022;95:11-23.  DOI  PubMed  PMC
               45.      Bertolo R, Autorino R, Fiori C, et al. Expanding the indications of robotic partial nephrectomy for highly complex renal tumors:
                   urologists’ perception of the impact of hyperaccuracy three-dimensional reconstruction. J Laparoendosc Adv Surg Tech A
                   2019;29:233-9.  DOI  PubMed
               46.      Porpiglia F, Amparore D, Checcucci E, et al. Three-dimensional virtual imaging of renal tumours: a new tool to improve the accuracy
                   of nephrometry scores. BJU Int 2019;124:945-54.  DOI  PubMed
               47.      Tuderti G, Mastroianni R, Anceschi U, et al. Assessing the trade-off between the safety and effectiveness of off-clamp robotic partial
                   nephrectomy for renal masses with a high RENAL score: a propensity score-matched comparison of perioperative and functional
                   outcomes in a multicenter analysis. Eur Urol Focus 2023;9:1037-43.  DOI  PubMed
               48.      Liu J, Liu J, Wang S, et al. Three-dimensional nephrometry scoring system: a precise scoring system to evaluate complexity of renal
                   tumors suitable for partial nephrectomy. PeerJ 2020;8:e8637.  DOI  PubMed  PMC
               49.      Yoshitomi KK, Komai Y, Yamamoto T, et al. Improving accuracy, reliability, and efficiency of the RENAL nephrometry score with
                   3D reconstructed virtual imaging. Urology 2022;164:286-92.  DOI  PubMed
               50.      Huang Q, Gu L, Zhu J, et al. A three-dimensional, anatomy-based nephrometry score to guide nephron-sparing surgery for renal sinus
                   tumors. Cancer 2020;126:2062-72.  DOI  PubMed
               51.      Mitsui Y, Sadahira T, Araki M, et al. The 3-D volumetric measurement including resected specimen for predicting renal function
                   afterrobot-assisted partial nephrectomy. Urology 2019;125:104-10.  DOI  PubMed
               52.      Meyer A, Woldu SL, Weinberg AC, et al. Predicting renal parenchymal loss after nephron sparing surgery. J Urol 2015;194:658-63.
                   DOI  PubMed
               53.      Porpiglia F, Amparore D, Checcucci E, et al; for ESUT Research Group. Current use of three-dimensional model technology in
                   urology: a road map for personalised surgical planning. Eur Urol Focus 2018;4:652-6.  DOI  PubMed
               54.      Tang SL, Kwoh CK, Teo MY, Sing NW, Ling KV. Augmented reality systems for medical applications. IEEE Eng Med Biol Mag
                   1998;17:49-58.  DOI  PubMed
               55.      Checcucci E, Amparore D, Fiori C, et al. 3D imaging applications for robotic urologic surgery: an ESUT YAUWP review. World J
   53   54   55   56   57   58   59   60   61   62   63