Page 59 - Read Online
P. 59
Page 10 of 10 Fasanella. Mini-invasive Surg 2024;8:5 https://dx.doi.org/10.20517/2574-1225.2023.79
Urol 2020;38:869-81. DOI PubMed
56. Hughes-Hallett A, Mayer EK, Marcus HJ, et al. Augmented reality partial nephrectomy: examining the current status and future
perspectives. Urology 2014;83:266-73. DOI PubMed
57. Altamar HO, Ong RE, Glisson CL, et al. Kidney deformation and intraprocedural registration: a study of elements of image-guided
kidney surgery. J Endourol 2011;25:511-7. DOI PubMed
58. Hughes-Hallett A, Pratt P, Mayer E, et al. Intraoperative ultrasound overlay in robot-assisted partial nephrectomy: first clinical
experience. Eur Urol 2014;65:671-2. DOI PubMed
59. Kowalewski KF, Egen L, Fischetti CE, et al; Young Academic Urologists (YAU)-Urotechnology-Group. Artificial intelligence for
renal cancer: from imaging to histology and beyond. Asian J Urol 2022;9:243-52. DOI PubMed PMC
60. Hameed BMZ, S Dhavileswarapu AVL, Raza SZ, et al. Artificial intelligence and its impact on urological diseases and management: a
comprehensive review of the literature. J Clin Med 2021;10:1864. DOI PubMed PMC
61. Feng Z, Rong P, Cao P, et al. Machine learning-based quantitative texture analysis of CT images of small renal masses: differentiation
of angiomyolipoma without visible fat from renal cell carcinoma. Eur Radiol 2018;28:1625-33. DOI PubMed
62. Shah M, Naik N, Somani BK, Hameed BMZ. Artificial intelligence (AI) in urology-current use and future directions: an iTRUE study.
Turk J Urol 2020;46:S27-39. DOI PubMed PMC
63. Kocak B, Yardimci AH, Bektas CT, et al. Textural differences between renal cell carcinoma subtypes: machine learning-based
quantitative computed tomography texture analysis with independent external validation. Eur J Radiol 2018;107:149-57. DOI
PubMed
64. Ding J, Xing Z, Jiang Z, et al. CT-based radiomic model predicts high grade of clear cell renal cell carcinoma. Eur J Radiol
2018;103:51-6. DOI PubMed
65. Li P, Ren H, Zhang Y, Zhou Z. Fifteen-gene expression based model predicts the survival of clear cell renal cell carcinoma. Medicine
2018;97:e11839. DOI PubMed PMC
66. Kocak B, Durmaz ES, Ates E, Ulusan MB. Radiogenomics in clear cell renal cell carcinoma: machine learning-based high-
dimensional quantitative CT texture analysis in predicting PBRM1 mutation status. AJR Am J Roentgenol 2019;212:W55-63. DOI
PubMed
67. Nakawala H, Bianchi R, Pescatori LE, De Cobelli O, Ferrigno G, De Momi E. “Deep-Onto” network for surgical workflow and
context recognition. Int J Comput Assist Radiol Surg 2019;14:685-96. DOI PubMed
68. Amir-Khalili A, Hamarneh G, Peyrat JM, et al. Automatic segmentation of occluded vasculature via pulsatile motion analysis in
endoscopic robot-assisted partial nephrectomy video. Med Image Anal 2015;25:103-10. DOI PubMed
69. Amparore D, Piramide F, De Cillis S, et al; Renal Cancer Working Group of the Young Academic Urologists (YAU) and European
Association of Urology (EAU). Robotic partial nephrectomy in 3D virtual reconstructions era: is the paradigm changed? World J Urol
2022;40:659-70. DOI PubMed
70. Veneziano D, Amparore D, Cacciamani G, Porpiglia F; Uro-technology; SoMe Working Group of the Young Academic Urologists
Working Party of the European Association of Urology; European Section of Uro-technology. Climbing over the barriers of current
imaging technology in urology. Eur Urol 2020;77:142-3. DOI PubMed
71. Checcucci E, Cacciamani GE, Amparore D, et al. The metaverse in urology: ready for prime time. The ESUT, ERUS, EULIS, and
ESU perspective. Eur Urol Open Sci 2022;46:96-8. DOI PubMed PMC

