Page 59 - Read Online
P. 59

Page 10 of 10               Fasanella. Mini-invasive Surg 2024;8:5  https://dx.doi.org/10.20517/2574-1225.2023.79

                   Urol 2020;38:869-81.  DOI  PubMed
               56.      Hughes-Hallett A, Mayer EK, Marcus HJ, et al. Augmented reality partial nephrectomy: examining the current status and future
                   perspectives. Urology 2014;83:266-73.  DOI  PubMed
               57.      Altamar HO, Ong RE, Glisson CL, et al. Kidney deformation and intraprocedural registration: a study of elements of image-guided
                   kidney surgery. J Endourol 2011;25:511-7.  DOI  PubMed
               58.      Hughes-Hallett A, Pratt P, Mayer E, et al. Intraoperative ultrasound overlay in robot-assisted partial nephrectomy: first clinical
                   experience. Eur Urol 2014;65:671-2.  DOI  PubMed
               59.      Kowalewski KF, Egen L, Fischetti CE, et al; Young Academic Urologists (YAU)-Urotechnology-Group. Artificial intelligence for
                   renal cancer: from imaging to histology and beyond. Asian J Urol 2022;9:243-52.  DOI  PubMed  PMC
               60.      Hameed BMZ, S Dhavileswarapu AVL, Raza SZ, et al. Artificial intelligence and its impact on urological diseases and management: a
                   comprehensive review of the literature. J Clin Med 2021;10:1864.  DOI  PubMed  PMC
               61.      Feng Z, Rong P, Cao P, et al. Machine learning-based quantitative texture analysis of CT images of small renal masses: differentiation
                   of angiomyolipoma without visible fat from renal cell carcinoma. Eur Radiol 2018;28:1625-33.  DOI  PubMed
               62.      Shah M, Naik N, Somani BK, Hameed BMZ. Artificial intelligence (AI) in urology-current use and future directions: an iTRUE study.
                   Turk J Urol 2020;46:S27-39.  DOI  PubMed  PMC
               63.      Kocak B, Yardimci AH, Bektas CT, et al. Textural differences between renal cell carcinoma subtypes: machine learning-based
                   quantitative computed tomography texture analysis with independent external validation. Eur J Radiol 2018;107:149-57.  DOI
                   PubMed
               64.      Ding J, Xing Z, Jiang Z, et al. CT-based radiomic model predicts high grade of clear cell renal cell carcinoma. Eur J Radiol
                   2018;103:51-6.  DOI  PubMed
               65.      Li P, Ren H, Zhang Y, Zhou Z. Fifteen-gene expression based model predicts the survival of clear cell renal cell carcinoma. Medicine
                   2018;97:e11839.  DOI  PubMed  PMC
               66.      Kocak B, Durmaz ES, Ates E, Ulusan MB. Radiogenomics in clear cell renal cell carcinoma: machine learning-based high-
                   dimensional quantitative CT texture analysis in predicting PBRM1 mutation status. AJR Am J Roentgenol 2019;212:W55-63.  DOI
                   PubMed
               67.      Nakawala H, Bianchi R, Pescatori LE, De Cobelli O, Ferrigno G, De Momi E. “Deep-Onto” network for surgical workflow and
                   context recognition. Int J Comput Assist Radiol Surg 2019;14:685-96.  DOI  PubMed
               68.      Amir-Khalili A, Hamarneh G, Peyrat JM, et al. Automatic segmentation of occluded vasculature via pulsatile motion analysis in
                   endoscopic robot-assisted partial nephrectomy video. Med Image Anal 2015;25:103-10.  DOI  PubMed
               69.      Amparore D, Piramide F, De Cillis S, et al; Renal Cancer Working Group of the Young Academic Urologists (YAU) and European
                   Association of Urology (EAU). Robotic partial nephrectomy in 3D virtual reconstructions era: is the paradigm changed? World J Urol
                   2022;40:659-70.  DOI  PubMed
               70.      Veneziano D, Amparore D, Cacciamani G, Porpiglia F; Uro-technology; SoMe Working Group of the Young Academic Urologists
                   Working Party of the European Association of Urology; European Section of Uro-technology. Climbing over the barriers of current
                   imaging technology in urology. Eur Urol 2020;77:142-3.  DOI  PubMed
               71.      Checcucci E, Cacciamani GE, Amparore D, et al. The metaverse in urology: ready for prime time. The ESUT, ERUS, EULIS, and
                   ESU perspective. Eur Urol Open Sci 2022;46:96-8.  DOI  PubMed  PMC
   54   55   56   57   58   59   60   61   62   63   64