Page 80 - Read Online
P. 80
Ghaseminejad et al. J Transl Genet Genom 2022;6:111-25 https://dx.doi.org/10.20517/jtgg.2021.49 Page 125
13. Zelinka CP, Sotolongo-Lopez M, Fadool JM. Targeted disruption of the endogenous zebrafish rhodopsin locus as models of rapid rod
photoreceptor degeneration. Mol Vis 2018;24:587-602. PubMed PMC
14. Ferreira MG, Cooper JP. Two modes of DNA double-strand break repair are reciprocally regulated through the fission yeast cell cycle.
Genes Dev 2004;18:2249-54. DOI PubMed PMC
15. Arnoult N, Correia A, Ma J, et al. Regulation of DNA repair pathway choice in S and G2 phases by the NHEJ inhibitor CYREN.
Nature 2017;549:548-52. DOI PubMed PMC
16. Lem J, Krasnoperova NV, Calvert PD, et al. Morphological, physiological, and biochemical changes in rhodopsin knockout mice. Proc
Natl Acad Sci U S A 1999;96:736-41. DOI PubMed PMC
17. Kartasasmita A, Fujiki K, Iskandar E, Sovani I, Fujimaki T, Murakami A. A novel nonsense mutation in rhodopsin gene in two
Indonesian families with autosomal recessive retinitis pigmentosa. Ophthalmic Genet 2011;32:57-63. DOI PubMed
18. Meng D, Ragi SD, Tsang SH. Therapy in rhodopsin-mediated autosomal dominant retinitis pigmentosa. Mol Ther 2020;28:2139-49.
DOI PubMed PMC
19. Feehan JM, Stanar P, Tam BM, Chiu C, Moritz OL. Generation and analysis of Xenopus laevis models of retinal degeneration using
CRISPR/Cas9. Methods Mol Biol 2019;1834:193-207. DOI PubMed
20. Tam BM, Xie G, Oprian DD, Moritz OL. Mislocalized rhodopsin does not require activation to cause retinal degeneration and neurite
outgrowth in Xenopus laevis. J Neurosci 2006;26:203-9. DOI
21. Adamus G, Zam ZS, Arendt A, Palczewski K, Mcdowell JH, Hargrave PA. Anti-rhodopsin monoclonal antibodies of defined
specificity: Characterization and application. Vision Res 1991;31:17-31. DOI PubMed
22. Tam BM, Moritz OL. Characterization of rhodopsin P23H-induced retinal degeneration in a Xenopus laevis model of retinitis
pigmentosa. Invest Ophthalmol Vis Sci 2006;47:3234-41. DOI PubMed
23. Tam BM, Noorwez SM, Kaushal S, Kono M, Moritz OL. Photoactivation-induced instability of rhodopsin mutants T4K and T17M in
rod outer segments underlies retinal degeneration in X. laevis transgenic models of retinitis pigmentosa. J Neurosci 2014;34:13336-48.
DOI PubMed PMC
24. Hicks D, Molday RS. Differential immunogold-dextran labeling of bovine and frog rod and cone cells using monoclonal antibodies
against bovine rhodopsin. Exp Eye Res 1986;42:55-71. DOI PubMed
25. BioTechniques - a simple way to treat PCR products prior to sequencing using ExoSAP-IT®. Available from:
http://www.biotechniques.com/BiotechniquesJournal/2008/May/A-Simple-Way-to-Treat-PCR-Products-Prior-to-Sequencing-Using-
ExoSAP-IT/biotechniques-45295.html [Last accessed on 12 Jan 2022].
26. Bocchero U, Tam BM, Chiu CN, Torre V, Moritz OL. Electrophysiological changes during early steps of retinitis pigmentosa. Invest
Ophthalmol Vis Sci 2019;60:933-43. DOI PubMed
27. Karimi K, Fortriede JD, Lotay VS, et al. Xenbase: a genomic, epigenomic and transcriptomic model organism database. Nucleic Acids
Res 2018;46:D861-8. DOI PubMed PMC
28. Wen RH, Stanar P, Tam B, Moritz OL. Autophagy in Xenopus laevis rod photoreceptors is independently regulated by
phototransduction and misfolded RHO P23H . Autophagy 2019;15:1970-89. DOI PubMed PMC
29. Tam BM, Moritz OL. Dark rearing rescues P23H rhodopsin-induced retinal degeneration in a transgenic Xenopus laevis model of
retinitis pigmentosa: a chromophore-dependent mechanism characterized by production of N-terminally truncated mutant rhodopsin. J
Neurosci 2007;27:9043-53. DOI PubMed PMC
30. Diakatou M, Dubois G, Erkilic N, Sanjurjo-Soriano C, Meunier I, Kalatzis V. Allele-specific knockout by CRISPR/Cas to treat
autosomal dominant retinitis pigmentosa caused by the G56R mutation in NR2E3. Int J Mol Sci 2021;22:2607. DOI PubMed PMC
31. Latella MC, Di Salvo MT, Cocchiarella F, et al. In vivo editing of the human mutant rhodopsin gene by electroporation of plasmid-
based CRISPR/Cas9 in the mouse retina. Mol Ther Nucleic Acids 2016;5:e389. DOI PubMed PMC
32. Maruyama T, Dougan SK, Truttmann MC, Bilate AM, Ingram JR, Ploegh HL. Increasing the efficiency of precise genome editing
with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat Biotechnol 2015;33:538-42. DOI PubMed PMC
33. Lin S, Staahl BT, Alla RK, Doudna JA. Enhanced homology-directed human genome engineering by controlled timing of
CRISPR/Cas9 delivery. Elife 2014;3:e04766. DOI PubMed PMC
34. Vartak SV, Raghavan SC. Inhibition of nonhomologous end joining to increase the specificity of CRISPR/Cas9 genome editing. FEBS
J 2015;282:4289-94. DOI PubMed
35. Srivastava M, Nambiar M, Sharma S, et al. An inhibitor of nonhomologous end-joining abrogates double-strand break repair and
impedes cancer progression. Cell 2012;151:1474-87. DOI PubMed
36. Tsai YT, Wu WH, Lee TT, et al. Clustered regularly interspaced short palindromic repeats-based genome surgery for the treatment of
autosomal dominant retinitis pigmentosa. Ophthalmology 2018;125:1421-30. DOI PubMed PMC
37. Miller RF, Dowling JE. Intracellular responses of the Müller (glial) cells of mudpuppy retina: their relation to b-wave of the
electroretinogram. J Neurophysiol 1970;33:323-41. DOI PubMed