Page 80 - Read Online
P. 80

Ghaseminejad et al. J Transl Genet Genom 2022;6:111-25  https://dx.doi.org/10.20517/jtgg.2021.49  Page 125

               13.      Zelinka CP, Sotolongo-Lopez M, Fadool JM. Targeted disruption of the endogenous zebrafish rhodopsin locus as models of rapid rod
                   photoreceptor degeneration. Mol Vis 2018;24:587-602.  PubMed  PMC
               14.      Ferreira MG, Cooper JP. Two modes of DNA double-strand break repair are reciprocally regulated through the fission yeast cell cycle.
                   Genes Dev 2004;18:2249-54.  DOI  PubMed  PMC
               15.      Arnoult N, Correia A, Ma J, et al. Regulation of DNA repair pathway choice in S and G2 phases by the NHEJ inhibitor CYREN.
                   Nature 2017;549:548-52.  DOI  PubMed  PMC
               16.      Lem J, Krasnoperova NV, Calvert PD, et al. Morphological, physiological, and biochemical changes in rhodopsin knockout mice. Proc
                   Natl Acad Sci U S A 1999;96:736-41.  DOI  PubMed  PMC
               17.      Kartasasmita A, Fujiki K, Iskandar E, Sovani I, Fujimaki T, Murakami A. A novel nonsense mutation in rhodopsin gene in two
                   Indonesian families with autosomal recessive retinitis pigmentosa. Ophthalmic Genet 2011;32:57-63.  DOI  PubMed
               18.      Meng D, Ragi SD, Tsang SH. Therapy in rhodopsin-mediated autosomal dominant retinitis pigmentosa. Mol Ther 2020;28:2139-49.
                   DOI  PubMed  PMC
               19.      Feehan JM, Stanar P, Tam BM, Chiu C, Moritz OL. Generation and analysis of Xenopus laevis models of retinal degeneration using
                   CRISPR/Cas9. Methods Mol Biol 2019;1834:193-207.  DOI  PubMed
               20.      Tam BM, Xie G, Oprian DD, Moritz OL. Mislocalized rhodopsin does not require activation to cause retinal degeneration and neurite
                   outgrowth in Xenopus laevis. J Neurosci 2006;26:203-9.  DOI
               21.      Adamus G, Zam ZS, Arendt A, Palczewski K, Mcdowell JH, Hargrave PA. Anti-rhodopsin monoclonal antibodies of defined
                   specificity: Characterization and application. Vision Res 1991;31:17-31.  DOI  PubMed
               22.      Tam BM, Moritz OL. Characterization of rhodopsin P23H-induced retinal degeneration in a Xenopus laevis model of retinitis
                   pigmentosa. Invest Ophthalmol Vis Sci 2006;47:3234-41.  DOI  PubMed
               23.      Tam BM, Noorwez SM, Kaushal S, Kono M, Moritz OL. Photoactivation-induced instability of rhodopsin mutants T4K and T17M in
                   rod outer segments underlies retinal degeneration in X. laevis transgenic models of retinitis pigmentosa. J Neurosci 2014;34:13336-48.
                   DOI  PubMed  PMC
               24.      Hicks D, Molday RS. Differential immunogold-dextran labeling of bovine and frog rod and cone cells using monoclonal antibodies
                   against bovine rhodopsin. Exp Eye Res 1986;42:55-71.  DOI  PubMed
               25.      BioTechniques  -  a  simple  way  to  treat  PCR  products  prior  to  sequencing  using  ExoSAP-IT®.  Available  from:
                   http://www.biotechniques.com/BiotechniquesJournal/2008/May/A-Simple-Way-to-Treat-PCR-Products-Prior-to-Sequencing-Using-
                   ExoSAP-IT/biotechniques-45295.html [Last accessed on 12 Jan 2022].
               26.      Bocchero U, Tam BM, Chiu CN, Torre V, Moritz OL. Electrophysiological changes during early steps of retinitis pigmentosa. Invest
                   Ophthalmol Vis Sci 2019;60:933-43.  DOI  PubMed
               27.      Karimi K, Fortriede JD, Lotay VS, et al. Xenbase: a genomic, epigenomic and transcriptomic model organism database. Nucleic Acids
                   Res 2018;46:D861-8.  DOI  PubMed  PMC
               28.      Wen  RH,  Stanar  P,  Tam  B,  Moritz  OL.  Autophagy  in  Xenopus  laevis  rod  photoreceptors  is  independently  regulated  by
                   phototransduction and misfolded RHO P23H . Autophagy 2019;15:1970-89.  DOI  PubMed  PMC
               29.      Tam BM, Moritz OL. Dark rearing rescues P23H rhodopsin-induced retinal degeneration in a transgenic Xenopus laevis model of
                   retinitis pigmentosa: a chromophore-dependent mechanism characterized by production of N-terminally truncated mutant rhodopsin. J
                   Neurosci 2007;27:9043-53.  DOI  PubMed  PMC
               30.      Diakatou M, Dubois G, Erkilic N, Sanjurjo-Soriano C, Meunier I, Kalatzis V. Allele-specific knockout by CRISPR/Cas to treat
                   autosomal dominant retinitis pigmentosa caused by the G56R mutation in NR2E3. Int J Mol Sci 2021;22:2607.  DOI  PubMed  PMC
               31.      Latella MC, Di Salvo MT, Cocchiarella F, et al. In vivo editing of the human mutant rhodopsin gene by electroporation of plasmid-
                   based CRISPR/Cas9 in the mouse retina. Mol Ther Nucleic Acids 2016;5:e389.  DOI  PubMed  PMC
               32.      Maruyama T, Dougan SK, Truttmann MC, Bilate AM, Ingram JR, Ploegh HL. Increasing the efficiency of precise genome editing
                   with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat Biotechnol 2015;33:538-42.  DOI  PubMed  PMC
               33.      Lin S, Staahl BT, Alla RK, Doudna JA. Enhanced homology-directed human genome engineering by controlled timing of
                   CRISPR/Cas9 delivery. Elife 2014;3:e04766.  DOI  PubMed  PMC
               34.      Vartak SV, Raghavan SC. Inhibition of nonhomologous end joining to increase the specificity of CRISPR/Cas9 genome editing. FEBS
                   J 2015;282:4289-94.  DOI  PubMed
               35.      Srivastava M, Nambiar M, Sharma S, et al. An inhibitor of nonhomologous end-joining abrogates double-strand break repair and
                   impedes cancer progression. Cell 2012;151:1474-87.  DOI  PubMed
               36.      Tsai YT, Wu WH, Lee TT, et al. Clustered regularly interspaced short palindromic repeats-based genome surgery for the treatment of
                   autosomal dominant retinitis pigmentosa. Ophthalmology 2018;125:1421-30.  DOI  PubMed  PMC
               37.      Miller RF, Dowling JE. Intracellular responses of the Müller (glial) cells of mudpuppy retina: their relation to b-wave of the
                   electroretinogram. J Neurophysiol 1970;33:323-41.  DOI  PubMed
   75   76   77   78   79   80   81   82   83   84   85