Page 100 - Read Online
P. 100

Page 198                  Ma et al. J Transl Genet Genom 2022;6:179-203  https://dx.doi.org/10.20517/jtgg.2021.48

               56.       Shin Y. J, Nam W.H, Park S.E, Kim J.H, Kim H.K. Aqueous humor concentrations of vascular endothelial growth factor and pigment
                    epithelium-derived factor in high myopic patients. Mol Vis 2012;18:2265-70.  PubMed  PMC
               57.       Chen W, Song H, Xie S, Han Q, Tang X, Chu Y. Correlation of macular choroidal thickness with concentrations of aqueous vascular
                    endothelial growth factor in high myopia. Curr Eye Res 2015;40:307-13.  DOI  PubMed
               58.       Yamamoto Y, Miyazaki D, Sasaki S, et al. Associations of inflammatory cytokines with choroidal neovascularization in highly
                    myopic eyes. Retina 2015;35:344-50.  DOI  PubMed
               59.       Martin D, Galisteo R, Gutkind JS. CXCL8/IL8 stimulates vascular endothelial growth factor (VEGF) expression and the autocrine
                    activation of VEGFR2 in endothelial cells by activating NFkappaB through the CBM (Carma3/Bcl10/Malt1) complex. J Biol Chem
                    2009;284:6038-42.  DOI  PubMed  PMC
               60.       Bianconi V, Sahebkar A, Atkin SL, Pirro M. The regulation and importance of monocyte chemoattractant protein-1. Curr Opin
                    Hematol 2018;25:44-51.  DOI  PubMed
               61.       Leveziel N, Yu Y, Reynolds R, et al. Genetic factors for choroidal neovascularization associated with high myopia. Invest
                    Ophthalmol Vis Sci 2012;53:5004-9.  DOI  PubMed  PMC
               62.       Dreismann AK, McClements ME, Barnard AR, et al. Functional expression of complement factor I following AAV-mediated gene
                    delivery in the retina of mice and human cells. Gene Ther 2021;28:265-76.  DOI  PubMed  PMC
               63.       Wang Q, Zhao HS, Li L. Association between complement factor I gene polymorphisms and the risk of age-related macular
                    degeneration: a Meta-analysis of literature. Int J Ophthalmol 2016;9:298-305.  DOI  PubMed  PMC
               64.       Fraczek LA, Martin BK. Transcriptional control of genes for soluble complement cascade regulatory proteins. Mol Immunol
                    2010;48:9-13.  DOI  PubMed
               65.       Miyake M, Yamashiro K, Nakanishi H, et al. Evaluation of pigment epithelium-derived factor and complement factor I
                    polymorphisms as a cause of choroidal neovascularization in highly myopic eyes. Invest Ophthalmol Vis Sci 2013;54:4208-12.  DOI
                    PubMed
               66.       Steele FR, Chader GJ, Johnson LV, Tombran-Tink J. Pigment epithelium-derived factor: neurotrophic activity and identification as a
                    member of the serine protease inhibitor gene family. Proc Natl Acad Sci U S A 1993;90:1526-30.  DOI  PubMed  PMC
               67.       Tombran-tink J, Chader GG, Johnson LV. PEDF: a pigment epithelium-derived factor with potent neuronal differentiative activity.
                    Exp Eye Res 1991;53:411-4.  DOI  PubMed
               68.       Karakousis P. C, John S.K, Behling K.C, et al. Localization of pigment epithelium derived factor (PEDF) in developing and adult
                    human ocular tissues. Mol Vis 2001;7:154-63.
               69.       Tombran-tink J, Shivaram S, Chader G, Johnson L, Bok D. Expression, secretion, and age-related downregulation of pigment
                    epithelium-derived factor, a serpin with neurotrophic activity. J Neurosci 1995;15:4992-5003.  PubMed  PMC
               70.       Tombran-Tink J, Barnstable CJ. PEDF: a multifaceted neurotrophic factor. Nat Rev Neurosci 2003;4:628-36.  DOI  PubMed
               71.       Dawson DW, Volpert OV, Gillis P, et al. Pigment epithelium-derived factor: a potent inhibitor of angiogenesis.  Science
                    1999;285:245-8.  DOI  PubMed
               72.       Cayouette M, Smith SB, Becerra SP, Gravel C. Pigment epithelium-derived factor delays the death of photoreceptors in mouse
                    models of inherited retinal degenerations. Neurobiol Dis 1999;6:523-32.  DOI  PubMed
               73.       Wang X, Liu X, Ren Y, et al. PEDF protects human retinal pigment epithelial cells against oxidative stress via upregulation of UCP2
                    expression. Mol Med Rep 2019;19:59-74.  DOI  PubMed  PMC
               74.       Cai J, Jiang WG, Grant MB, Boulton M. Pigment epithelium-derived factor inhibits angiogenesis via regulated intracellular
                    proteolysis of vascular endothelial growth factor receptor 1. J Biol Chem 2006;281:3604-13.  DOI  PubMed
               75.       Renno R. Z, Youssri A.I, Michaud N, Gragoudas E.S, Miller J.W. Expression of pigment epithelium-derived factor in experimental
                    choroidal neovascularization. Invest Ophthalmol Vis Sci 2002;43:1574-80.
               76.       Ho TC, Yang YC, Cheng HC, Wu AC, Chen SL, Tsao YP. Pigment epithelium-derived factor protects retinal pigment epithelium
                    from oxidant-mediated barrier dysfunction. Biochem Biophys Res Commun 2006;342:372-8.  DOI  PubMed
               77.       Amano S, Yamagishi S, Inagaki Y, et al. Pigment epithelium-derived factor inhibits oxidative stress-induced apoptosis and
                    dysfunction of cultured retinal pericytes. Microvasc Res 2005;69:45-55.  DOI  PubMed
               78.       Wang Y, Subramanian P, Shen D, Tuo J, Becerra SP, Chan CC. Pigment epithelium-derived factor reduces apoptosis and pro-
                    inflammatory cytokine gene expression in a murine model of focal retinal degeneration. ASN Neuro 2013;5:e00126.  DOI  PubMed
                    PMC
               79.       Ruiz-Medrano J, Montero JA, Flores-Moreno I, Arias L, García-Layana A, Ruiz-Moreno JM. Myopic maculopathy: current status
                    and proposal for a new classification and grading system (ATN). Prog Retin Eye Res 2019;69:80-115.  DOI  PubMed
               80.       Ruiz-Medrano J, Flores-Moreno I, Ohno-Matsui K, Cheung CMG, Silva R, Ruiz-Moreno JM. Correlation between atrophy-traction-
                    neovascularization grade for myopic maculopathy and clinical severity. Retina 2021;41:1867-73.  DOI  PubMed  PMC
               81.       Chua WH, Balakrishnan V, Chan YH, et al. Atropine for the treatment of childhood myopia. Ophthalmology 2006;113:2285-91.
                    DOI  PubMed
               82.       Chia A, Chua WH, Cheung YB, et al. Atropine for the treatment of childhood myopia: safety and efficacy of 0.5%, 0.1%, and 0.01%
                    doses (Atropine for the Treatment of Myopia 2). Ophthalmology 2012;119:347-54.  DOI  PubMed
               83.       Chia A, Chua WH, Wen L, Fong A, Goon YY, Tan D. Atropine for the treatment of childhood myopia: changes after stopping
                    atropine 0.01%, 0.1% and 0.5%. Am J Ophthalmol 2014;157:451-457.e1.  DOI  PubMed
               84.       Chia A, Lu QS, Tan D. Five-Year Clinical Trial on atropine for the treatment of myopia 2: myopia control with atropine 0.01%
   95   96   97   98   99   100   101   102   103   104   105