Page 104 - Read Online
P. 104

Page 202                  Ma et al. J Transl Genet Genom 2022;6:179-203  https://dx.doi.org/10.20517/jtgg.2021.48

               174.      Xiang P, Wu KC, Zhu Y, et al. A novel Bruch’s membrane-mimetic electrospun substrate scaffold for human retinal pigment
                    epithelium cells. Biomaterials 2014;35:9777-88.  DOI  PubMed
               175.      Diniz B, Thomas P, Thomas B, et al. Subretinal implantation of retinal pigment epithelial cells derived from human embryonic stem
                    cells: improved survival when implanted as a monolayer. Invest Ophthalmol Vis Sci 2013;54:5087-96.  DOI  PubMed  PMC
               176.      da Cruz L, Fynes K, Georgiadis O, et al. Phase 1 clinical study of an embryonic stem cell-derived retinal pigment epithelium patch in
                    age-related macular degeneration. Nat Biotechnol 2018;36:328-37.  DOI  PubMed
               177.      Kashani AH, Lebkowski JS, Rahhal FM, et al. A bioengineered retinal pigment epithelial monolayer for advanced, dry age-related
                    macular degeneration. Sci Transl Med 2018;10:eaao4097.  DOI  PubMed
               178.      Mandai M, Watanabe A, Kurimoto Y, et al. Autologous induced stem-cell-derived retinal cells for macular degeneration. N Engl J
                    Med 2017;376:1038-46.  DOI  PubMed
               179.      Zhang CJ, Ma Y, Jin ZB. The road to restore vision with photoreceptor regeneration. Exp Eye Res 2021;202:108283.  DOI  PubMed
               180.      Golchin A, Farahany TZ. Biological products: cellular therapy and FDA approved products. Stem Cell Rev Rep 2019;15:166-75.  DOI
                    PubMed
               181.      Zhang Z, Wei Y, Jiang X, Zhang S. Pars plana vitrectomy and wide internal limiting membrane peeling with perfluoropropane
                    tamponade for highly myopic foveoschisis-associated macular hole. Retina 2017;37:274-82.  DOI  PubMed
               182.      Shao Q, Xia H, Heussen FM, Ouyang Y, Sun X, Fan Y. Postoperative anatomical and functional outcomes of different stages of high
                    myopia macular hole. BMC Ophthalmol 2015;15:93.  DOI  PubMed  PMC
               183.      Qu J, Zhao M, Jiang Y, Li X. Vitrectomy outcomes in eyes with high myopic macular hole without retinal detachment. Retina
                    2012;32:275-80.  DOI  PubMed
               184.      Fang Y, Yokoi T, Shimada N, et al. Development of macular atrophy after pars plana vitrectomy for myopic traction maculopathy
                    and macular hole retinal detachment in pathologic myopia. Retina 2020;40:1881-93.  DOI  PubMed
               185.      Alkabes M, Pichi F, Nucci P, et al. Anatomical and visual outcomes in high myopic macular hole (HM-MH) without retinal
                    detachment: a review. Graefes Arch Clin Exp Ophthalmol 2014;252:191-9.  DOI  PubMed
               186.      Pang CE, Sarraf D, Freund KB. Extreme choroidal thinning in high myopia. Retina 2015;35:407-15.  DOI  PubMed
               187.      Keeley F, Morin J, Vesely S. Characterization of collagen from normal human sclera. Exp Eye Res 1984;39:533-42.  DOI  PubMed
               188.      Boote  C,  Sigal  IA,  Grytz  R,  Hua  Y,  Nguyen  TD,  Girard  MJA.  Scleral  structure  and  biomechanics.  Prog  Retin  Eye  Res
                    2020;74:100773.  DOI  PubMed  PMC
               189.      Rada JA, Shelton S, Norton TT. The sclera and myopia. Exp Eye Res 2006;82:185-200.  DOI  PubMed
               190.      Shen L, You QS, Xu X, et al. Scleral and choroidal volume in relation to axial length in infants with retinoblastoma versus adults
                    with malignant melanomas or end-stage glaucoma. Graefes Arch Clin Exp Ophthalmol 2016;254:1779-86.  DOI
               191.      Curtin BJ, Iwamoto T, Renaldo DP. Normal and staphylomatous sclera of high myopia. An electron microscopic study. Arch
                    Ophthalmol 1979;97:912-5.  DOI  PubMed
               192.      Guggenheim J. A, McBrien N.A. Form-deprivation myopia induces activation of scleral matrix metalloproteinase-2 in tree shrew.
                    Invest Ophthalmol Vis Sci 1996;37:1380-95.
               193.      Rada J. A, Nickla D.L, Troilo D. Decreased proteoglycan synthesis associated with form deprivation myopia in mature primate eyes.
                    Invest Ophthalmol Vis Sci ;41:2050-8.
               194.      Gabbiani G. The myofibroblast in wound healing and fibrocontractive diseases. J Pathol 2003;200:500-3.  DOI  PubMed
               195.      Hinz B, Celetta G, Tomasek JJ, Gabbiani G, Chaponnier C. Alpha-smooth muscle actin expression upregulates fibroblast contractile
                    activity. Mol Biol Cell 2001;12:2730-41.  DOI  PubMed  PMC
               196.      Jobling AI, Gentle A, Metlapally R, McGowan BJ, McBrien NA. Regulation of scleral cell contraction by transforming growth
                    factor-beta and stress: competing roles in myopic eye growth. J Biol Chem 2009;284:2072-9.  DOI  PubMed
               197.      Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA. Myofibroblasts and mechano-regulation of connective tissue
                    remodelling. Nat Rev Mol Cell Biol 2002;3:349-63.  DOI  PubMed
               198.      Shinohara K, Yoshida T, Liu H, et al. Establishment of novel therapy to reduce progression of myopia in rats with experimental
                    myopia by fibroblast transplantation on sclera. J Tissue Eng Regen Med 2018;12:e451-61.  DOI  PubMed
               199.      Tsai CL, Wu PC, Fini ME, Shi S. Identification of multipotent stem/progenitor cells in murine sclera. Invest Ophthalmol Vis Sci
                    2011;52:5481-7.  DOI  PubMed  PMC
               200.      Zvaifler NJ, Marinova-Mutafchieva L, Adams G, et al. Mesenchymal precursor cells in the blood of normal individuals. Arthritis Res
                    2000;2:477-88.  DOI  PubMed  PMC
               201.      Nakahara H. In vitro differentiation of bone and hypertrophic cartilage from periosteal-derived cells*1. Exp Cell Res 1991;195:492-
                    503.  DOI
               202.      Čamernik K, Marc J, Zupan J. Human skeletal muscle-derived mesenchymal stem/stromal cell isolation and growth kinetics analysis.
                    In: Turksen K, editor. Stem Cells and Aging. New York: Springer; 2019. pp. 119-29.  DOI  PubMed
               203.      Friedenstein A. J., Gorskaja J.F., Kulagina N.N. Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp
                    Hematol 1976;4:267-74. [PMID:976387.  PubMed
               204.      Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl
                    Acad Sci U S A 2000;97:13625-30.  DOI  PubMed  PMC
               205.      Wang L, Huang S, Li S, et al. Efficacy and safety of umbilical cord mesenchymal stem cell therapy for rheumatoid arthritis patients: a
                    prospective phase I/II study. Drug Des Devel Ther 2019;13:4331-40.  DOI  PubMed  PMC
   99   100   101   102   103   104   105   106   107   108   109