Page 103 - Read Online
P. 103

Ma et al. J Transl Genet Genom 2022;6:179-203  https://dx.doi.org/10.20517/jtgg.2021.48  Page 201

               144.      Krasselt K, Frommelt C, Brunner R, Rauscher FG, Francke M, Körber N. Various cross-linking methods inhibit the collagenase I
                    degradation of rabbit scleral tissue. BMC Ophthalmol 2020;20:488.  DOI  PubMed  PMC
               145.      Wang M, Corpuz CC. Effects of scleral cross-linking using genipin on the process of form-deprivation myopia in the guinea pig: a
                    randomized controlled experimental study. BMC Ophthalmol 2015;15:89.  DOI  PubMed  PMC
               146.      Hannon BG, Luna C, Feola AJ, et al. Assessment of visual and retinal function following in vivo genipin-induced scleral
                    crosslinking. Transl Vis Sci Technol 2020;9:8.  DOI  PubMed  PMC
               147.      Sun M, Zhang F, Li Y, et al. Evaluation of the safety and long-term scleral biomechanical stability of UVA cross-linking on scleral
                    collagen in rhesus monkeys. J Refract Surg 2020;36:696-702.  DOI  PubMed
               148.      Xue A, Zheng L, Tan G, et al. Genipin-crosslinked donor sclera for posterior scleral contraction/reinforcement to fight progressive
                    myopia. Invest Ophthalmol Vis Sci 2018;59:3564-73.  DOI  PubMed
               149.      Weiss JN, Levy S. Stem cell ophthalmology treatment study (SCOTS): bone marrow derived stem cells in the treatment of Usher
                    syndrome. Stem Cell Investig 2019;6:31.  DOI  PubMed  PMC
               150.      Weiss JN, Levy S. Stem Cell Ophthalmology Treatment Study (SCOTS): bone marrow derived stem cells in the treatment of
                    Dominant Optic Atrophy. Stem Cell Investig 2019;6:41.  DOI  PubMed  PMC
               151.      Weiss JN, Levy S, Benes SC. Stem Cell Ophthalmology Treatment Study (SCOTS): bone marrow-derived stem cells in the treatment
                    of Leber's hereditary optic neuropathy. Neural Regen Res 2016;11:1685-94.  DOI  PubMed  PMC
               152.      Weiss JN, Levy S, Benes SC. Stem Cell Ophthalmology Treatment Study (SCOTS) for retinal and optic nerve diseases: a case report
                    of improvement in relapsing auto-immune optic neuropathy. Neural Regen Res 2015;10:1507-15.  DOI  PubMed  PMC
               153.      Weiss JN, Benes SC, Levy S. Stem Cell Ophthalmology Treatment Study (SCOTS): improvement in serpiginous choroidopathy
                    following autologous bone marrow derived stem cell treatment. Neural Regen Res 2016;11:1512-6.  DOI  PubMed  PMC
               154.      Jonas JB, Cheung CMG, Panda-Jonas S. Updates on the epidemiology of age-related macular degeneration. Asia Pac J Ophthalmol
                    (Phila) 2017;6:493-7.  DOI  PubMed
               155.      Blasiak J. Senescence in the pathogenesis of age-related macular degeneration. Cell Mol Life Sci 2020;77:789-805.  DOI  PubMed
               156.      Fritsche LG, Igl W, Bailey JN, et al. A large genome-wide association study of age-related macular degeneration highlights
                    contributions of rare and common variants. Nat Genet 2016;48:134-43.  DOI  PubMed  PMC
               157.      Kauppinen A, Paterno JJ, Blasiak J, Salminen A, Kaarniranta K. Inflammation and its role in age-related macular degeneration. Cell
                    Mol Life Sci 2016;73:1765-86.  DOI  PubMed  PMC
               158.      Pennington KL, DeAngelis MM. Epidemiology of age-related macular degeneration (AMD): associations with cardiovascular disease
                    phenotypes and lipid factors. Eye Vis (Lond) 2016;3:34.  DOI  PubMed  PMC
               159.      Gragoudas ES, Adamis AP, Cunningham ET Jr, Feinsod M, Guyer DR; VEGF Inhibition Study in Ocular Neovascularization
                    Clinical Trial Group. Pegaptanib for neovascular age-related macular degeneration. N Engl J Med 2004;351:2805-16.  DOI  PubMed
               160.      Ricci F, Bandello F, Navarra P, Staurenghi G, Stumpp M, Zarbin M. Neovascular age-related macular degeneration: therapeutic
                    management and new-upcoming approaches. Int J Mol Sci 2020;21:8242.  DOI  PubMed  PMC
               161.      Tsang SH, Sharma T. Stargardt Disease. In: Tsang SH, Sharma T, editors. Atlas of inherited retinal diseases. Cham: Springer
                    International Publishing; 2018. pp.139-51.
               162.      Liew G, Michaelides M, Bunce C. A comparison of the causes of blindness certifications in England and Wales in working age adults
                    (16-64 years), 1999-2000 with 2009-2010. BMJ Open 2014;4:e004015.  DOI  PubMed  PMC
               163.      Tsybovsky Y, Molday RS, Palczewski K. The ATP-Binding Cassette Transporter ABCA4: Structural and Functional Properties and
                    Role in Retinal Disease. In: Lambris JD, Adamis AP, editors. Inflammation and retinal disease: complement biology and pathology.
                    New York: Springer; 2010. pp. 105-25.  DOI  PubMed  PMC
               164.      Zhang K, Kniazeva M, Han M, et al. A 5-bp deletion in ELOVL4 is associated with two related forms of autosomal dominant
                    macular dystrophy. Nat Genet 2001;27:89-93.  DOI  PubMed
               165.      Aveldaño MI. Phospholipid species containing long and very long polyenoic fatty acids remain with rhodopsin after hexane
                    extraction of photoreceptor membranes. Biochemistry 1988;27:1229-39.  DOI  PubMed
               166.      Suh M, Clandinin MT. 20:5n-3 but not 22:6n-3 is a preferred substrate for synthesis of n-3 very-long- chain fatty acids (C24-C36) in
                    retina. Curr Eye Res 2005;30:959-68.  DOI
               167.      Norris CE, Keener JE, Perera SMDC, et al. Native mass spectrometry reveals the simultaneous binding of lipids and zinc to
                    rhodopsin. Int J Mass Spectrom 2021;460:116477.  DOI  PubMed  PMC
               168.      McMahon A, Jackson SN, Woods AS, Kedzierski W. A Stargardt disease-3 mutation in the mouse Elovl4 gene causes retinal
                    deficiency of C32-C36 acyl phosphatidylcholines. FEBS Lett 2007;581:5459-63.  DOI  PubMed  PMC
               169.      Kniazeva M, Chiang MF, Morgan B, et al. A new locus for autosomal dominant stargardt-like disease maps to chromosome 4. Am J
                    Hum Genet 1999;64:1394-9.  DOI  PubMed  PMC
               170.      Yang Z, Chen Y, Lillo C, et al. Mutant prominin 1 found in patients with macular degeneration disrupts photoreceptor disk
                    morphogenesis in mice. J Clin Invest 2008;118:2908-16.  DOI  PubMed  PMC
               171.      Stern J, Temple S. Retinal pigment epithelial cell proliferation. Exp Biol Med (Maywood) 2015;240:1079-86.  DOI  PubMed  PMC
               172.      Zhang H, Su B, Jiao L, et al. Transplantation of GMP-grade human iPSC-derived retinal pigment epithelial cells in rodent model: the
                    first pre-clinical study for safety and efficacy in China. Ann Transl Med 2021;9:245.  DOI  PubMed  PMC
               173.      Schwartz SD, Hubschman J, Heilwell G, et al. Embryonic stem cell trials for macular degeneration: a preliminary report. The Lancet
                    2012;379:713-20.  DOI  PubMed
   98   99   100   101   102   103   104   105   106   107   108