Page 103 - Read Online
P. 103
Ma et al. J Transl Genet Genom 2022;6:179-203 https://dx.doi.org/10.20517/jtgg.2021.48 Page 201
144. Krasselt K, Frommelt C, Brunner R, Rauscher FG, Francke M, Körber N. Various cross-linking methods inhibit the collagenase I
degradation of rabbit scleral tissue. BMC Ophthalmol 2020;20:488. DOI PubMed PMC
145. Wang M, Corpuz CC. Effects of scleral cross-linking using genipin on the process of form-deprivation myopia in the guinea pig: a
randomized controlled experimental study. BMC Ophthalmol 2015;15:89. DOI PubMed PMC
146. Hannon BG, Luna C, Feola AJ, et al. Assessment of visual and retinal function following in vivo genipin-induced scleral
crosslinking. Transl Vis Sci Technol 2020;9:8. DOI PubMed PMC
147. Sun M, Zhang F, Li Y, et al. Evaluation of the safety and long-term scleral biomechanical stability of UVA cross-linking on scleral
collagen in rhesus monkeys. J Refract Surg 2020;36:696-702. DOI PubMed
148. Xue A, Zheng L, Tan G, et al. Genipin-crosslinked donor sclera for posterior scleral contraction/reinforcement to fight progressive
myopia. Invest Ophthalmol Vis Sci 2018;59:3564-73. DOI PubMed
149. Weiss JN, Levy S. Stem cell ophthalmology treatment study (SCOTS): bone marrow derived stem cells in the treatment of Usher
syndrome. Stem Cell Investig 2019;6:31. DOI PubMed PMC
150. Weiss JN, Levy S. Stem Cell Ophthalmology Treatment Study (SCOTS): bone marrow derived stem cells in the treatment of
Dominant Optic Atrophy. Stem Cell Investig 2019;6:41. DOI PubMed PMC
151. Weiss JN, Levy S, Benes SC. Stem Cell Ophthalmology Treatment Study (SCOTS): bone marrow-derived stem cells in the treatment
of Leber's hereditary optic neuropathy. Neural Regen Res 2016;11:1685-94. DOI PubMed PMC
152. Weiss JN, Levy S, Benes SC. Stem Cell Ophthalmology Treatment Study (SCOTS) for retinal and optic nerve diseases: a case report
of improvement in relapsing auto-immune optic neuropathy. Neural Regen Res 2015;10:1507-15. DOI PubMed PMC
153. Weiss JN, Benes SC, Levy S. Stem Cell Ophthalmology Treatment Study (SCOTS): improvement in serpiginous choroidopathy
following autologous bone marrow derived stem cell treatment. Neural Regen Res 2016;11:1512-6. DOI PubMed PMC
154. Jonas JB, Cheung CMG, Panda-Jonas S. Updates on the epidemiology of age-related macular degeneration. Asia Pac J Ophthalmol
(Phila) 2017;6:493-7. DOI PubMed
155. Blasiak J. Senescence in the pathogenesis of age-related macular degeneration. Cell Mol Life Sci 2020;77:789-805. DOI PubMed
156. Fritsche LG, Igl W, Bailey JN, et al. A large genome-wide association study of age-related macular degeneration highlights
contributions of rare and common variants. Nat Genet 2016;48:134-43. DOI PubMed PMC
157. Kauppinen A, Paterno JJ, Blasiak J, Salminen A, Kaarniranta K. Inflammation and its role in age-related macular degeneration. Cell
Mol Life Sci 2016;73:1765-86. DOI PubMed PMC
158. Pennington KL, DeAngelis MM. Epidemiology of age-related macular degeneration (AMD): associations with cardiovascular disease
phenotypes and lipid factors. Eye Vis (Lond) 2016;3:34. DOI PubMed PMC
159. Gragoudas ES, Adamis AP, Cunningham ET Jr, Feinsod M, Guyer DR; VEGF Inhibition Study in Ocular Neovascularization
Clinical Trial Group. Pegaptanib for neovascular age-related macular degeneration. N Engl J Med 2004;351:2805-16. DOI PubMed
160. Ricci F, Bandello F, Navarra P, Staurenghi G, Stumpp M, Zarbin M. Neovascular age-related macular degeneration: therapeutic
management and new-upcoming approaches. Int J Mol Sci 2020;21:8242. DOI PubMed PMC
161. Tsang SH, Sharma T. Stargardt Disease. In: Tsang SH, Sharma T, editors. Atlas of inherited retinal diseases. Cham: Springer
International Publishing; 2018. pp.139-51.
162. Liew G, Michaelides M, Bunce C. A comparison of the causes of blindness certifications in England and Wales in working age adults
(16-64 years), 1999-2000 with 2009-2010. BMJ Open 2014;4:e004015. DOI PubMed PMC
163. Tsybovsky Y, Molday RS, Palczewski K. The ATP-Binding Cassette Transporter ABCA4: Structural and Functional Properties and
Role in Retinal Disease. In: Lambris JD, Adamis AP, editors. Inflammation and retinal disease: complement biology and pathology.
New York: Springer; 2010. pp. 105-25. DOI PubMed PMC
164. Zhang K, Kniazeva M, Han M, et al. A 5-bp deletion in ELOVL4 is associated with two related forms of autosomal dominant
macular dystrophy. Nat Genet 2001;27:89-93. DOI PubMed
165. Aveldaño MI. Phospholipid species containing long and very long polyenoic fatty acids remain with rhodopsin after hexane
extraction of photoreceptor membranes. Biochemistry 1988;27:1229-39. DOI PubMed
166. Suh M, Clandinin MT. 20:5n-3 but not 22:6n-3 is a preferred substrate for synthesis of n-3 very-long- chain fatty acids (C24-C36) in
retina. Curr Eye Res 2005;30:959-68. DOI
167. Norris CE, Keener JE, Perera SMDC, et al. Native mass spectrometry reveals the simultaneous binding of lipids and zinc to
rhodopsin. Int J Mass Spectrom 2021;460:116477. DOI PubMed PMC
168. McMahon A, Jackson SN, Woods AS, Kedzierski W. A Stargardt disease-3 mutation in the mouse Elovl4 gene causes retinal
deficiency of C32-C36 acyl phosphatidylcholines. FEBS Lett 2007;581:5459-63. DOI PubMed PMC
169. Kniazeva M, Chiang MF, Morgan B, et al. A new locus for autosomal dominant stargardt-like disease maps to chromosome 4. Am J
Hum Genet 1999;64:1394-9. DOI PubMed PMC
170. Yang Z, Chen Y, Lillo C, et al. Mutant prominin 1 found in patients with macular degeneration disrupts photoreceptor disk
morphogenesis in mice. J Clin Invest 2008;118:2908-16. DOI PubMed PMC
171. Stern J, Temple S. Retinal pigment epithelial cell proliferation. Exp Biol Med (Maywood) 2015;240:1079-86. DOI PubMed PMC
172. Zhang H, Su B, Jiao L, et al. Transplantation of GMP-grade human iPSC-derived retinal pigment epithelial cells in rodent model: the
first pre-clinical study for safety and efficacy in China. Ann Transl Med 2021;9:245. DOI PubMed PMC
173. Schwartz SD, Hubschman J, Heilwell G, et al. Embryonic stem cell trials for macular degeneration: a preliminary report. The Lancet
2012;379:713-20. DOI PubMed