Page 88 - Read Online
P. 88
Page 356 Jones et al. J Transl Genet Genom 2021;5:341-56 https://dx.doi.org/10.20517/jtgg.2021.19
embryonic stem cell differentiation. Proc Natl Acad Sci U S A 2018;115:E6162-71. DOI PubMed PMC
104. Abascal F, Corpet A, Gurard-Levin ZA, et al. Subfunctionalization via adaptive evolution influenced by genomic context: the case of
histone chaperones ASF1a and ASF1b. Mol Biol Evol 2013;30:1853-66. DOI PubMed
105. Das C, Lucia MS, Hansen KC, Tyler JK. CBP/p300-mediated acetylation of histone H3 on lysine 56. Nature 2009;459:113-7. DOI
PubMed PMC
106. Li F, Huang Q, Luster TA, et al. In vivo epigenetic CRISPR screen identifies Asf1a as an immunotherapeutic target in Kras-mutant
lung adenocarcinoma. Cancer Discov 2020;10:270-87. DOI PubMed PMC
107. Lee KY, Im JS, Shibata E, Dutta A. ASF1a promotes non-homologous end joining repair by facilitating phosphorylation of MDC1 by
ATM at double-strand breaks. Mol Cell 2017;68:61-75.e5. DOI PubMed PMC
108. Wang C, Chang JF, Yan H, et al. A conserved RAD6-MDM2 ubiquitin ligase machinery targets histone chaperone ASF1A in
tumorigenesis. Oncotarget 2015;6:29599-613. DOI PubMed PMC
109. Henrique R. ASF1A in gastric and colorectal cancer: on the hinge between genetics and epigenetics? EBioMedicine 2017;21:45-6.
DOI PubMed PMC
110. Liang X, Yuan X, Yu J, et al. Histone chaperone asf1a predicts poor outcomes for patients with gastrointestinal cancer and drives
cancer progression by stimulating transcription of β-catenin target genes. EBioMedicine 2017;21:104-16. DOI PubMed PMC
111. Wu Y, Li X, Yu J, Björkholm M, Xu D. ASF1a inhibition induces p53-dependent growth arrest and senescence of cancer cells. Cell
Death Dis 2019;10:76. DOI PubMed PMC
112. Im JS, Keaton M, Lee KY, Kumar P, Park J, Dutta A. ATR checkpoint kinase and CRL1βTRCP collaborate to degrade ASF1a and
thus repress genes overlapping with clusters of stalled replication forks. Genes Dev 2014;28:875-87. DOI PubMed PMC
113. Sauer PV, Gu Y, Liu WH, et al. Mechanistic insights into histone deposition and nucleosome assembly by the chromatin assembly
factor-1. Nucleic Acids Res 2018;46:9907-17. DOI PubMed PMC
114. Buschbeck M, Hake SB. Variants of core histones and their roles in cell fate decisions, development and cancer. Nat Rev Mol Cell
Biol 2017;18:299-314. DOI PubMed
115. Burgess RJ, Zhang Z. Histone chaperones in nucleosome assembly and human disease. Nat Struct Mol Biol 2013;20:14-22. DOI
PubMed PMC
116. Polo SE, Theocharis SE, Klijanienko J, et al. Chromatin assembly factor-1, a marker of clinical value to distinguish quiescent from
proliferating cells. Cancer Res 2004;64:2371-81. DOI PubMed
117. Nabatiyan A, Krude T. Silencing of chromatin assembly factor 1 in human cells leads to cell death and loss of chromatin assembly
during DNA synthesis. Mol Cell Biol 2004;24:2853-62. DOI PubMed PMC
118. Staibano S, Mascolo M, Mancini FP, et al. Overexpression of chromatin assembly factor-1 (CAF-1) p60 is predictive of adverse
behaviour of prostatic cancer. Histopathology 2009;54:580-9. DOI PubMed
119. Garee JP, Oesterreich S. SAFB1's multiple functions in biological control-lots still to be done! J Cell Biochem 2010;109:312-9. DOI
PubMed
120. Renz A, Fackelmayer FO. Purification and molecular cloning of the scaffold attachment factor B (SAF-B), a novel human nuclear
protein that specifically binds to S/MAR-DNA. Nucleic Acids Res 1996;24:843-9. DOI PubMed PMC
121. Altmeyer M, Toledo L, Gudjonsson T, et al. The chromatin scaffold protein SAFB1 renders chromatin permissive for DNA damage
signaling. Mol Cell 2013;52:206-20. DOI PubMed
122. Debril MB, Dubuquoy L, Feige JN, et al. Scaffold attachment factor B1 directly interacts with nuclear receptors in living cells and
represses transcriptional activity. J Mol Endocrinol 2005;35:503-17. DOI PubMed
123. Oesterreich S, Zhang Q, Hopp T, et al. Tamoxifen-bound estrogen receptor (ER) strongly interacts with the nuclear matrix protein
HET/SAF-B, a novel inhibitor of ER-mediated transactivation. Mol Endocrinol 2000;14:369-81. DOI PubMed
124. Hammerich-Hille S, Kaipparettu BA, Tsimelzon A, et al. SAFB1 mediates repression of immune regulators and apoptotic genes in
breast cancer cells. J Biol Chem 2010;285:3608-16. DOI PubMed PMC
125. Hammerich-Hille S, Bardout VJ, Hilsenbeck SG, Osborne CK, Oesterreich S. Low SAFB levels are associated with worse outcome
in breast cancer patients. Breast Cancer Res Treat 2010;121:503-9. DOI PubMed
126. Mukhopadhyay NK, Kim J, You S, et al. Scaffold attachment factor B1 regulates the androgen receptor in concert with the growth
inhibitory kinase MST1 and the methyltransferase EZH2. Oncogene 2014;33:3235-45. DOI PubMed PMC
127. Sugiura M, Sato H, Kanesaka M, et al. Epigenetic modifications in prostate cancer. Int J Urol 2021;28:140-9. DOI PubMed
128. Suzuki H, Komiya A, Aida S, et al. Microsatellite instability and other molecular abnormalities in human prostate cancer. Jpn J
Cancer Res 1995;86:956-61. DOI PubMed PMC
129. Hügel A, Wernert N. Loss of heterozygosity (LOH), malignancy grade and clonality in microdissected prostate cancer. Br J Cancer
1999;79:551-7. DOI PubMed PMC
130. Koochekpour S. Genetic and epigenetic changes in human prostate cancer. Iran Red Crescent Med J 2011;13:80-98. PubMed PMC
131. Kamdar S, Isserlin R, Van der Kwast T, et al. Exploring targets of TET2-mediated methylation reprogramming as potential
discriminators of prostate cancer progression. Clin Epigenetics 2019;11:54. DOI PubMed PMC
132. Li K, Luo H, Huang L, Luo H, Zhu X. Microsatellite instability: a review of what the oncologist should know. Cancer Cell Int
2020;20:16. DOI PubMed PMC
133. Veneti Z, Gkouskou KK, Eliopoulos AG. Polycomb repressor complex 2 in genomic instability and cancer. Int J Mol Sci
2017;18:1657. DOI PubMed PMC
134. Wang J, Li GL, Ming SL, et al. BRD4 inhibition exerts anti-viral activity through DNA damage-dependent innate immune responses.
PLoS Pathog 2020;16:e1008429. DOI PubMed PMC